

CSE 417 Algorithms and Complexity

Lecture 23 Winter 2020 Network Flow, Part 2

Outline

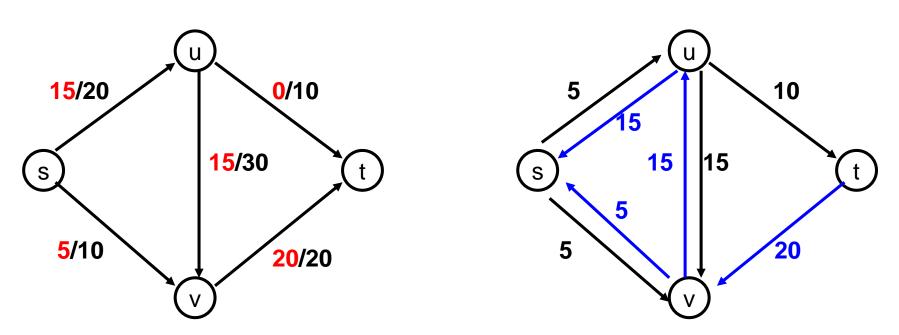
- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Simple applications of Max Flow

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \ge 0$
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c -f
 - $-G_R$: edge e'' from v to u with capacity f

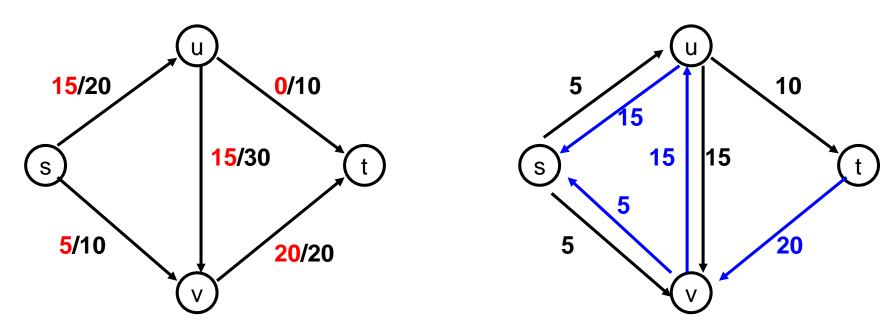


Augmenting Path Algorithm

- Augmenting path in residual graph
 - Vertices v_1, v_2, \dots, v_k

•
$$v_1 = s$$
, $v_k = t$

• Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \dots k-1$



Adding flow along a path in the residual graph

- Let P be an s-t path in the residual graph with capacity b
- b units of flow can be added along P in the graph G
- Need to show:
 - new flow satisfies capacity constraints
 - new flow satisfies conservation constraints

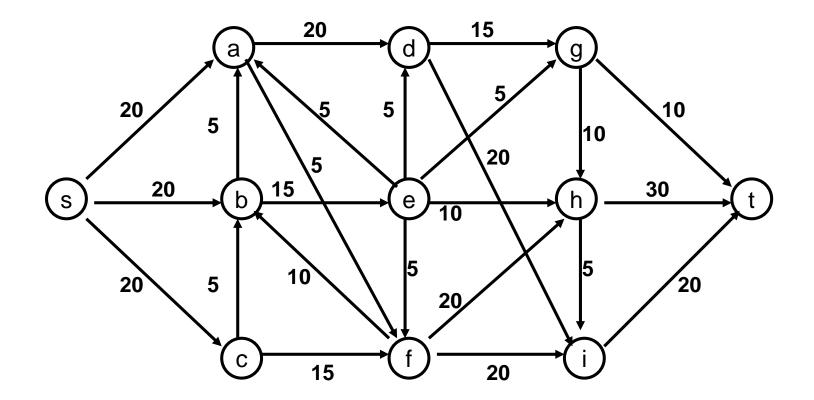
Ford-Fulkerson Algorithm (1956)

while not done

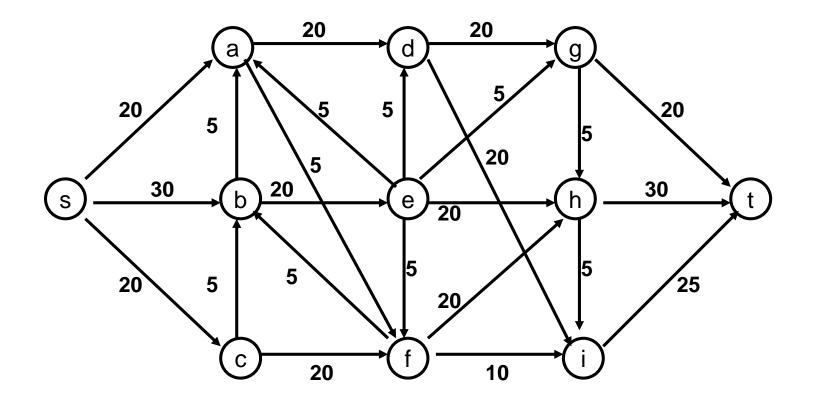
Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units of flow along path P in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

Flow Example I



Flow Example II



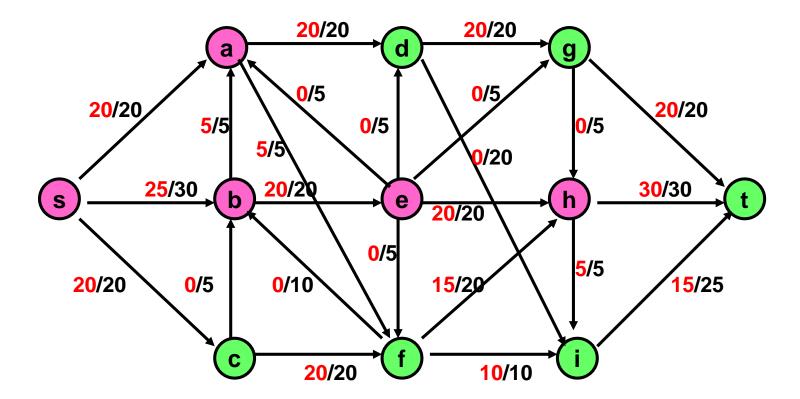
Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

• Flow(S,T) <= Cap(S,T)

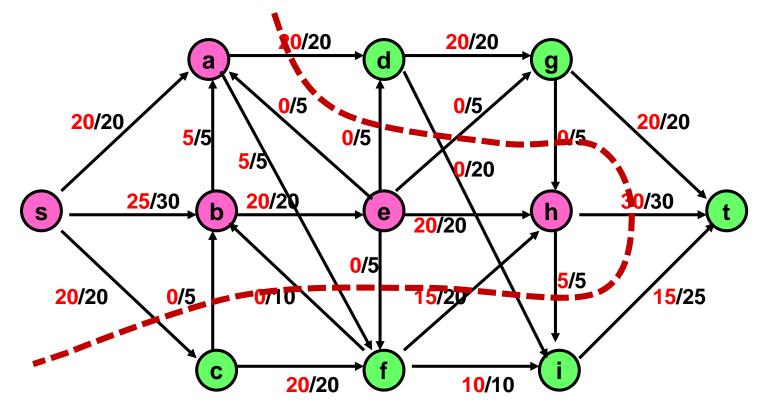
What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T = \{c, f, i, d, g, t\}$



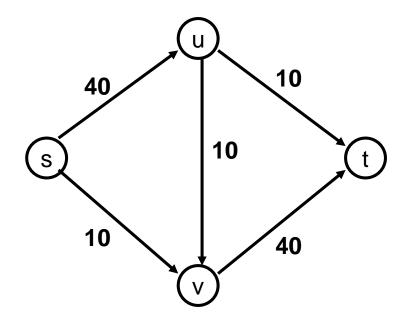
What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T = \{c, f, i, d, g, t\}$

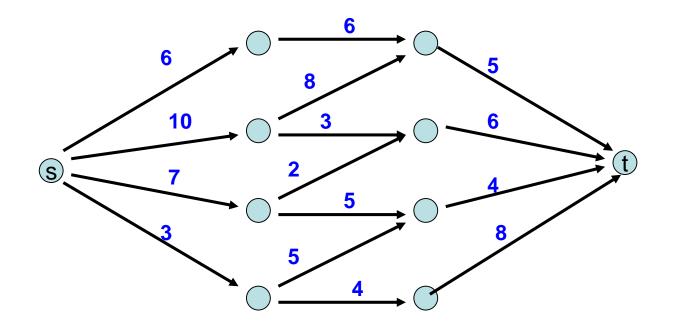


Cap(S,T) = 95, Flow(S,T) = 80 - 15 = 65

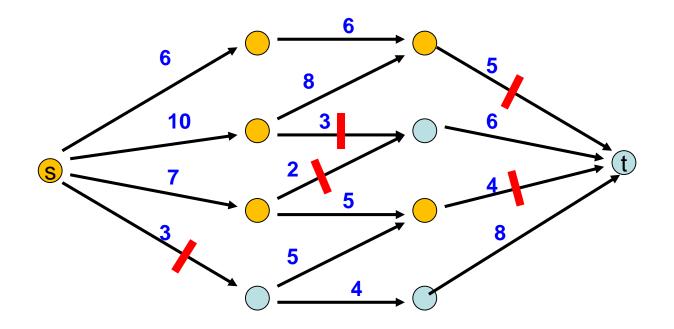
Minimum value cut



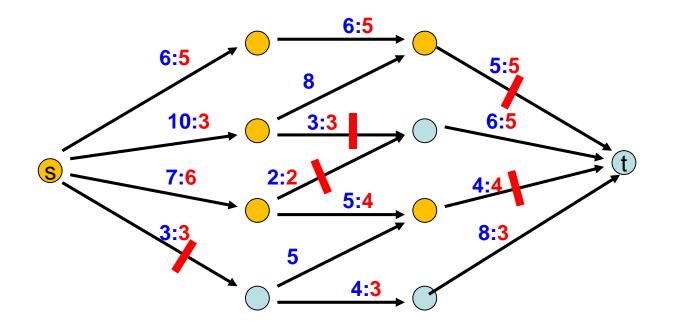
Find a minimum value cut



Find a minimum value cut

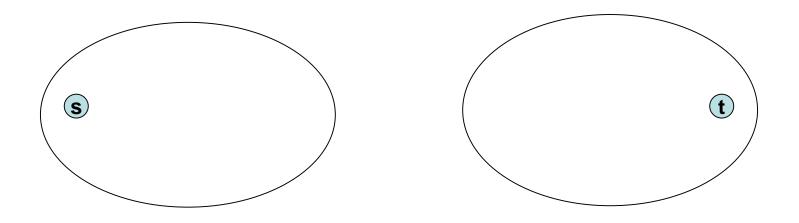


Find a minimum value cut

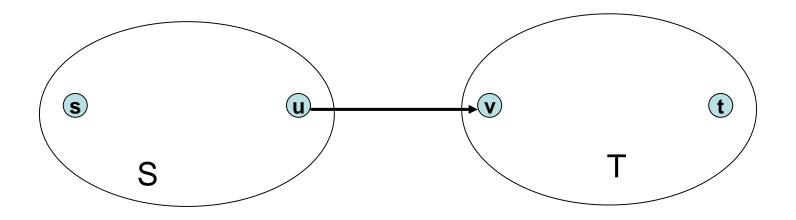


MaxFlow – MinCut Theorem

- There exists a flow which has the same value of the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity



Let S be the set of vertices in G_R reachable from s with paths of positive capacity



What can we say about the flows and capacity between u and v?

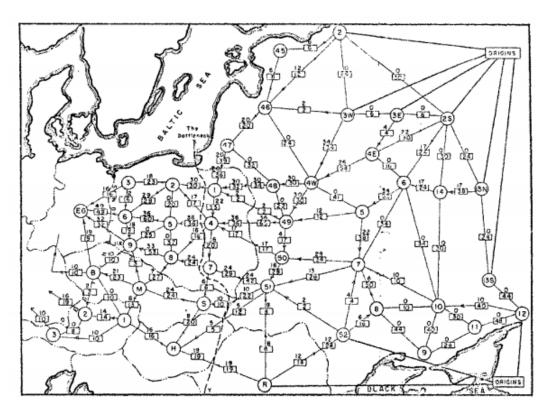
Max Flow - Min Cut Theorem

 Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin by looking for a maximum flow.

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network



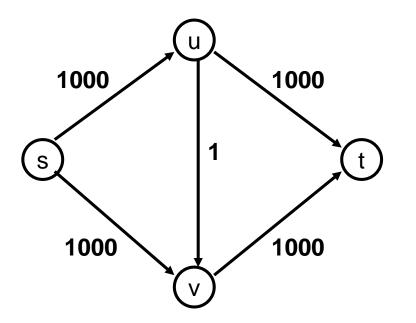
Ford Fulkerson Runtime

• Cost per phase X number of phases

- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

• The worst case performance of the Ford-Fulkerson algorithm is horrible



Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $-O(m^2log(C))$ time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow