CSE 417 Algorithms and Complexity

Richard Anderson
Lecture 21
DP and Shortest Paths

Longest Common Subsequence

- $\mathrm{C}=\mathrm{c}_{1} \ldots \mathrm{C}_{\mathrm{g}}$ is a subsequence of $\mathrm{A}=\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

LCS(BARTHOLEMEWSIMPSON, KRUSTYTHECLOWN) = RTHOWN

LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}, B=b_{1} b_{2} \ldots b_{n}$
- Opt[$\mathrm{j}, \mathrm{k}]$ is the length of
$\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$
- Optimization Recurrence:
- If $\mathrm{a}_{\mathrm{i}}=\mathrm{b}_{\mathrm{k}}$, Opt[$\left.\mathrm{j}, \mathrm{k}\right]=1+\operatorname{Opt}[j-1, \mathrm{k}-1]$
- If $a_{j}!=b_{k}, \operatorname{Opt}[j, k]=\max (\operatorname{Opt}[j-1, k], \operatorname{Opt}[j, k-1])$

Code to compute Opt[n, m]

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < m; j++)
        if (A[ i ] == B[j])
                Opt[ [ ,j ] = Opt[ i-1, j-1 ] + 1;
            else if (Opt[ i-1, j ] >= Opt[ i, j-1 ])
                Opt[ i, j ] := Opt[ [-1, j ];
            else
                Opt[ i, j ] := Opt[ i, j-1];
```

Storing the path information

A[1..m], B[1..n]
for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt $[i, 0]:=0$;
for $\mathrm{j}:=1$ to $\mathrm{n} \quad$ Opt $[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $i:=1$ to m

$a_{1} \ldots a_{m}$
for $j:=1$ to n
if $A[i]=B[j]\{$ Opt $[i, j]:=1+$ Opt $[i-1, j-1] ;$ Best $[i, j]:=$ Diag; \}
else if Opt[i-1, j] >= Opt[i, j-1]
\{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{$ Opt $[\mathrm{i}, \mathrm{j}]:=\operatorname{Opt}[\mathrm{i}, \mathrm{j}-1 \mathrm{l}$, Best $[\mathrm{i}, \mathrm{j}]:=$ Down; \}

Implementation 1

public int Computelcs() \{
int $n=$ str1. Length
int[,] opt = new $\operatorname{int}[n+1, m+1]$;
for (int $i=0 ; i<=n$; $i++$)
$\operatorname{opt}[i, 0]=0 ; \quad 1 ;$
for (int $j=0 ; j<=m ; j++$)
opt $[0, j]=0$;
for (int $i=1 ; i<=n ; i++$)
for (int $j=1 ; j<=m ; j++)$
$\operatorname{opt}[i, j]=\operatorname{opt}[i-1, j-1]+1$;
else if (opt[i-1, opt$]>=\mathrm{opt}[\mathrm{i}, \mathrm{j}-1]$
$\operatorname{opt}[i, j]=\operatorname{opt}[i-1, j]$;
$\operatorname{opt}[i, j]=\operatorname{opt}[i, j-1] ;$
return opt $[\mathrm{n}, \mathrm{m}]$;

How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.

Implementation 2

public int SpaceEfficientLCS() \{
int $n=$ str1. Length;
int [] prevRow = new int [$m+1$];
int[] currRow = new int [$m+1]$;
for (int $\mathrm{j}=0$; $\mathrm{j}<=\mathrm{m} ; \mathrm{j}++$)
prevRow[j] $=0$;
for (int $i=1$; i $<=n$; i++) $\{$
currRow[0] = 0;
for (int $j=1 ; j<=m ; j++$) \{
if $(\operatorname{str} 1[i-1]==\operatorname{str} 2[j-1])$ currRow[j] $=\operatorname{prevRow}[j-1]+1 ;$
else if (prevRow[j] $>=\operatorname{currRow}[j-1]$) currRow[j] = prevRow[j];
currRow[j] = currRow[j-1];
${ }^{\text {f }}$ for (int $\mathrm{j}=1 ; \mathrm{j}<=\mathrm{m} ; \mathrm{j}^{++}$) $\operatorname{prevRow}[j]=\operatorname{currRow}[j]$
\}
return currRow[m]:

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The computation requires $\mathrm{O}(\mathrm{nm})$ space if we store all of the string information

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space
- Section 6.7 of the text, but we will not have time to cover in detail (so you are not responsible for section 6.7)

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

Prove by induction that $T(m, n)<=2 c m n$

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$
- Solution: $T(m, n)<=2 c n m$

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- Bellman-Ford Algorithm
$-O(m n)$ time for graphs which can have negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n -1 edges

Shortest paths with a fixed number of edges

- Find the shortest path from s to w with exactly k edges

Express as a recurrence

- Compute distance from starting vertex s
- $\operatorname{Opt}_{k}(w)=\min _{x}\left[\operatorname{Opt}_{k-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- Opt $_{0}(w)=0$ if $w=s$ and infinity otherwise

Algorithm, Version 1

for each w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{O}, \mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

Algorithm, Version 2

for each w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right) ;$

Algorithm, Version 3

for each w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right) ;$

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all w, M[w] <= M[i, w];

Algorithm, Version 4

for each w
$\mathrm{M}[\mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
for each x
if $(M[w]>M[x]+\operatorname{cost}[x, w])$
$\mathrm{P}[\mathrm{w}]=\mathrm{x}$;
$M[w]=M[x]+\operatorname{cost}[x, w]$;

Theorem
If the pointer graph has a cycle, then the graph has a negative cost cycle

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

- What if you want to find negative cost cycles?

What about finding Longest Paths

- Can we just change Min to Max?

