CSE 417 Algorithms

Richard Anderson
Lecture 19, Winter 2020
Dynamic Programming

Optimal linear interpolation

Optimal linear interpolation with K

$$
\operatorname{Opt}_{k}[j]=\min _{i}\left\{\text { Opt }_{k-1}[i]+E_{i, j}\right\} \text { for } 0<i<j
$$

Optimal solution with k segments extends an optimal solution of k -1 segments on a smaller problem

Subset Sum Problem

- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}=\{6,8,9,11,13,16,18,24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- Opt[j, K] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt[2, 7] =
- Opt[3, 7] =
- Opt[3,12] =
- Opt[4,12] =

Subset Sum Recurrence

- Opt[$j, ~ K]$ the largest subset of $\left\{w_{1}, \ldots, w_{j}\right\}$ that sums to at most K

Subset Sum Grid

$$
\operatorname{Opt}[\mathrm{j}, \mathrm{~K}]=\max \left(\mathrm{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)
$$

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\{2,4,7,10\}$

Subset Sum Code

$$
\text { for } j=1 \text { to } n
$$

$$
\text { for } k=1 \text { to } W
$$

$$
\operatorname{Opt}[j, k]=\max \left(\operatorname{Opt}[j-1, k], \operatorname{Opt}\left[j-1, k-w_{j}\right]+w_{j}\right)
$$

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{I_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{i \varepsilon S} \mathrm{~V}_{\mathrm{i}}$ such that $\sum_{\mathrm{i} \varepsilon \mathrm{S} S} \mathrm{~W}_{\mathrm{i}}<=\mathrm{K}$

Knapsack Recurrence

Subset Sum Recurrence:
Opt [j, K] $=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{w}_{\mathrm{j}}\right)$

Knapsack Recurrence:

Knapsack Grid

$\operatorname{Opt}[\mathrm{j}, \mathrm{K}]=\max \left(\mathrm{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$

Alternate approach for Subset Sum

- Alternate formulation of Subset Sum dynamic programming algorithm
- Sum $[i, K]=$ true if there is a subset of $\left\{w_{1}, \ldots w_{i}\right\}$ that sums to exactly K , false otherwise
- Sum $[i, K]=\operatorname{Sum}[i-1, K]$ OR Sum $\left[i-1, K-w_{i}\right]$
- Sum $[0,0]=$ true; Sum[i, 0] = false for $i!=0$
- To allow for negative numbers, we need to fill in the array between $\mathrm{K}_{\text {min }}$ and $\mathrm{K}_{\text {max }}$

Run time for Subset Sum

- With n items and target sum K , the run time is $\mathrm{O}(\mathrm{nK})$
- If K is $1,000,000,000,000,000,000,000,000$ this is very slow
- Alternate brute force algorithm: examine all subsets: $\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$

Dynamic Programming Examples

- Examples
- Optimal Billboard Placement
- Text, Solved Exercise, Pg 307
- Linebreaking with hyphenation
- Compare with HW problem 6, Pg 317
- String approximation
- Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
$-b_{i}=\left(p_{i}, v_{i}\right), v_{i}$: value of placing billboard at position p_{i}
- Constraint:
- At most one billboard every five miles
- Example
$-\{(6,5),(8,6),(12,5),(14,1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input b_{1}, \ldots, b_{n}, where $b_{i}=\left(p_{i}, v_{i}\right)$, position and value of billboard i

Opt[k] = fun(Opt[0],..,Opt[k-1])

- How is the solution determined from sub problems?

Solution

$$
\begin{aligned}
& \mathrm{j}=0 ; \quad \text { // } \mathrm{j} \text { is five miles behind the current position } \\
& \quad / / \text { the last valid location for a billboard, if one placed at } P[k] \\
& \text { for } k:=1 \text { to } n \\
& \text { while }(P[j]<P[k]-5) \\
& \quad j:=j+1 ; \\
& j:=j-1 ; \\
& \text { Opt }[k]=\operatorname{Max}(\operatorname{Opt}[k-1], V[k]+\operatorname{Opt}[j]) ;
\end{aligned}
$$

