CSE 418 Algorithms

Lecture 18, Winter 2020 Dynamic Programming

Announcements

- Reading:
 - -6.1-6.2, Weighted Interval Scheduling
 - -6.3 Segmented Least Squares
 - -6.4 Knapsack and Subset Sum

Intervals sorted by end time

Dynamic Programming

- · Weighted Interval Scheduling
- Given a collection of intervals I₁,...,I_n with weights w₁,...,w_n, choose a maximum weight set of non-overlapping intervals

$$I_{1} = \frac{4 \quad P[I_{1}] = 0}{6 \quad P[I_{2}] = 0}$$

$$I_{3} = \frac{3 \quad P[I_{3}] = 1}{5 \quad P[I_{4}] = 0}$$

$$I_{4} = \frac{5 \quad P[I_{5}] = 1}{6 \quad P[I_{5}] = 2}$$

Intervals sorted by end time

Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . . , I_j
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]])
 - Where p[j] is the index of the last interval which finishes before \mathbf{I}_{j} starts

Iterative Algorithm

```
int[] M = new int[n+1];
char[] R = new char[n+1];

M[0] = 0;
for (int j = 1; j < n+1; j++) {
    v1 = M[j-1];
    v2 = W[j] + M[P[j]];
    if (v1 > v3) {
        M[j] = v1;
        R[j] = 'A';
    }
    else {
        M[j] = v2;
        R[j] = 'B';
    }
}
```

Computing the solution

 $\begin{aligned} & \text{Opt[}\ j\] = \text{max (Opt[}\ j-1],\ w_{_{j}} + \text{Opt[}\ p[\ j\]\]) \\ & \text{Record which case is used in Opt computation} \end{aligned}$

Notation

- Points p₁, p₂, . . ., p_n ordered by x-coordinate (p_i = (x_i, y_i))
- E_{i,j} is the least squares error for the optimal line interpolating p_i, . . . p_i

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p₁,...,p_n with two line segments
- E_{i,j} is the least squares error for the optimal line interpolating p_i, . . . p_i

Optimal interpolation with k segments

- · Optimal segmentation with three segments
 - $-Min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

$Opt_k[j]$: Minimum error approximating $p_1...p_i$ with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem

00000

0

Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

```
for j = 1 to n
   Opt[1, j] = E<sub>1,j</sub>;

for k = 2 to n-1
   for j = 2 to n
        t = E<sub>1,j</sub>
   for i = 1 to j-1
        t = min(t, Opt[k-1, i] + E<sub>i,j</sub>)
   Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- · Use to reconstruct solution

Variable number of segments

- · Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments

Penalty cost measure

• Opt[j] = min($E_{1,j}$, min $_i$ (Opt[i] + $E_{i,j}$ + P))