

Intervals sorted by end time

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ with weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, choose a maximum weight set of non-overlapping intervals

Optimality Condition

- Opt[j$]$ is the maximum weight independent set of intervals $I_{1}, I_{2}, \ldots, I_{j}$
- Opt[j] $=\max \left(\operatorname{Opt}[\mathrm{j}-1], \mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}]\right.$])
- Where $p[j]$ is the index of the last interval which finishes before l_{j} starts

Iterative Algorithm

```
int[] M = new int[n+1];
char[] R = new char[n+1]
M[0] = 0;
for (int j = 1; j < n+1; j++) {
        v1 = M[j-1];
        v2 = W[j] + M[P[j]];
        if (v1 > v3) {
            M[j] = v1;
            R[j] = 'A' 
        }
        else {
            M[j] = v2
            R[j] = 'B';
        }
}
```


Computing the solution

Opt[j$]=\max \left(\operatorname{Opt}[\mathrm{j}-1], \mathrm{w}_{\mathrm{j}}+\operatorname{Opt}[\mathrm{p}[\mathrm{j}] \mathrm{]})\right.$
Record which case is used in Opt computation

2

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \text { B } & \text { B } & \text { B } & \text { A } & \text { A } & \text { B } & \text { A } \\
\hline
\end{array}
$$

\qquad 4
6
\qquad 7
6

What is the optimal linear interpolation with two line segments ${ }_{\circ}$

Notation

- Points $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ ordered by x-coordinate $\left(p_{i}=\left(x_{i}, y_{i}\right)\right)$
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{j}$

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_{1}, \ldots, p_{n} with two line segments
- $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ is the least squares error for the optimal line interpolating $p_{i}, \ldots p_{j}$

Optimal interpolation with k segments

- Optimal segmentation with three segments $-\operatorname{Min}_{i, j}\left\{\mathrm{E}_{1, \mathrm{i}}+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{E}_{\mathrm{i}, \mathrm{n},}\right\}$
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$ combinations considered
- Generalization to k segments leads to considering $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}-1}\right)$ combinations

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem

$\bigcirc \bigcirc$
\bigcirc

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Opt ${ }_{k}[j]$: Minimum error approximating $p_{1} \ldots p_{j}$ with k segments

How do you express $\mathrm{Opt}_{\mathrm{k}}[\mathrm{j}]$ in terms of $\mathrm{Opt}_{\mathrm{k}-1}[1], \ldots, \mathrm{Opt}_{\mathrm{k}-1}[\mathrm{j}]$?

Optimal multi-segment interpolation

```
Compute Opt[ k, j] for 0 < k < j < n
for j = 1 to n
    Opt[1, j] = E E 1,j;
for k = 2 to n-1
    for j = 2 to n
    t = E E 1,j
    for i}=1\mathrm{ to j-1
        t = min(t, Opt[k-1, i] + E Ei,j)
        Opt[k, j] = t
```


Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x \#Segments

Penalty cost measure

- $\operatorname{Opt}[\mathrm{j}]=\min \left(\mathrm{E}_{1, \mathrm{j}}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{P}\right)\right)$

