CSE 417 Algorithms

Lecture 16, Winter 2020
Inversions and 2-d Closest Pair

Announcements

· Exams will be returned at end of class

Divide and Conquer Algorithms

- · Mergesort, Quicksort
- · Strassen's Algorithm
- Median
- Inversion counting
- · Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba's Algorithm)

Select the k-th largest from an array

- Selection, given n numbers and an integer k, find the k-th largest
- · Median is a special case
- The standard approach is to use a quicksort like algorithm
 - But with one recursive problem
- · The difficulty is ensuring a good split
 - Worst case O(n2) time

Select(A, k)

```
Select(A, k)\{ \\ Choose a pivot element x from A \\ S_1 = \{y \text{ in } A \mid y < x\} \\ S_2 = \{y \text{ in } A \mid y > x\} \\ S_3 = \{y \text{ in } A \mid y = x\} \\ \text{if } (|S_2| >= k) \\ \text{return Select}(S_2, k) \\ \text{else if } (|S_2| + |S_3| >= k) \\ \text{return x} \\ \text{else} \\ \\ S_1 = \{x \in S_2 \mid x \in S_3\} \}
```

Randomized Selection

- · Choose the element at random
- Analysis can show that the algorithm has expected run time O(n)

Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time

What to know about median finding

- The key to the algorithm is pivot selection
- · Choosing a random pivot works well
- Improved random pivot selection: median of three
- Randomized algorithms can find median with 3/2 n comparisons
- Deterministic median finding is harder
 BFPRT Algorithm guarantees a 3n/4-n/4 split

Inversion Problem

- Let a₁, . . . a_n be a permutation of 1 . . n
- (a_i, a_j) is an inversion if i < j and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n2) time
 - Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Counting Inversions

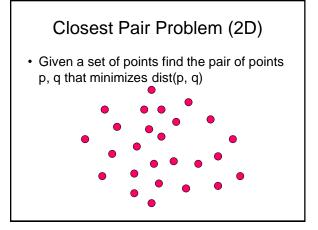
11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Problem – how do we count inversions between sub problems in O(n) time? • Solution – Count inversions while merging

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions 1 4 11 12 2 3 7 15 5 8 9 16 6 10 13 14 Indicate the number of inversions for each element detected when merging

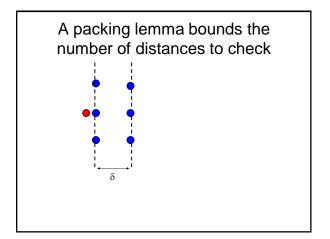


Divide and conquer $\hbox{. If we solve the problem on two subsets, does it help? (Separate by median x coordinate)}$

Packing Lemma Suppose that the minimum distance between points is at least δ , what is the maximum number of points that can be packed in a ball of radius δ ?

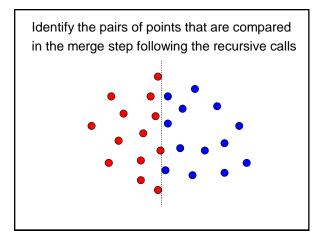
Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?



Details

- · Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)



Algorithm run time

- · After preprocessing:
 - -T(n) = cn + 2T(n/2)

Integer Arithmetic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930 X 5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to multiply two n digit numbers:

Recursive Multiplication Algorithm (First attempt)

$$\begin{aligned} x &= x_1 \, 2^{n/2} + x_0 \\ y &= y_1 \, 2^{n/2} + y_0 \\ xy &= (x_1 \, 2^{n/2} + x_0) \, (y_1 \, 2^{n/2} + y_0) \\ &= x_1 y_1 \, 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \end{aligned}$$

Recurrence:

Run time:

Simple algebra

$$x = x_1 2^{n/2} + x_0$$

$$y = y_1 2^{n/2} + y_0$$

$$xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

Karatsuba's Algorithm

Multiply n-digit integers x and y

Let $x = x_1 2^{n/2} + x_0$ and $y = y_1 2^{n/2} + y_0$ Recursively compute $a = x_1 y_1$ $b = x_0 y_0$ $p = (x_1 + x_0)(y_1 + y_0)$ Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: T(n) = 3T(n/2) + cn

log₂ 3 = 1.58496250073...

Next week

• Dynamic Programming!