CSE 417 Algorithms

Richard Anderson Lecture 15, Winter 2020 Divide and Conquer

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 The bottom level wins
- Geometrically decreasing (x < 1)

 The top level wins
- Balanced (x = 1)
 Equal contribution

$T(n) = aT(n/b) + n^{c}$

- Balanced: a = b^c - T(n) = 16T(n/4) + n²
- Increasing: a > b^c
 - -T(n) = 5T(n/3) + n
- $-T(n) = 3T(n/4) + n^{1/2}$
- Decreasing: a < b^c
 - -T(n) = T(4n/5) + n
 - $-T(n) = 7T(n/2) + n^3$

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages

 Quicksort progress made at the split step
 Mergesort progress made at the combine step
 - Mergesort progress made at the combine step
 D&C Algorithms
 - Strassen's Algorithm Matrix Multiplication
 Inversions
 - Inversions
 Median
 - Closest Pair
 - Integer Multiplication

How to multiply 2 x 2 matrices with 7 multiplications

Multiply 2 x 2 Matrices: r s a b e g	Where:	
	$p_1 = (b - d)(f + h)$	
tu = ca tn	$p_2 = (a + d)(e + h)$	
	$p_3 = (a - c)(e + g)$	
$r = p_1 + p_2 - p_4 + p_6$	p ₄ = (a + b)h	
$s = p_4 + p_5$	p₅= a(g – h)	
$t = p_6 + p_7$	$p_6 = d(f - e)$	
$u = p_2 - p_3 + p_5 - p_7$	p ₇ = (c + d)e	
	Aho, Hopcroft, Ullman 197	

Inversion Problem

- Let a₁, . . . a_n be a permutation of 1 . . n
- (a_i, a_j) is an inversion if i < j and a_i > a_j

4, 6, 1, 7, 3, 2, 5

- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time

 Can we do better?

Application

- Counting inversions can be use to measure how close ranked preferences are
 - People rank 20 movies, based on their rankings you cluster people who like that same type of movie

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
 - Sort the elements, and choose the middle one
 Can you do better?

	Select(A, k)				
$ \begin{array}{c} Select(A, k) \\ & Choose element x from A \\ & S_1 = \{y \mbox{ in } A \mid y < x\} \\ & S_2 = \{y \mbox{ in } A \mid y > x\} \\ & S_3 = \{y \mbox{ in } A \mid y > x\} \\ & S_3 = \{y \mbox{ in } A \mid y > x\} \\ & f(S_2 > = k) \\ & return \ Select(S_2, k) \\ & else \ if (S_2 + S_3 > = k) \\ & return \ x \\ & else \\ & return \ Select(S_1, k - S_2 - S_3) \\ \} \end{array} $					
	S ₁	S ₃	S ₂		
l	·		-		

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time O(n)

Deterministic Selection

• What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time

BFPRT Algorithm

• A very clever choose algorithm . . .

Split into n/5 sets of size 5 M be the set of medians of these sets Let x be the median of M

• T(n) <= T(3n/4) + T(n/5) + c n

Prove that T(n) <= 20 c n

BFPRT runtime

|S₁| < 3n/4, |S₂| < 3n/4

Split into n/5 sets of size 5 M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2