CSE 417Algorithms

Richard Anderson
Lecture 14, Winter 2020
Recurrences, Part 2

Announcements

- Midterm, Monday, February 10, 2020
- Coverage through KT 5.2
- Sample midterm questions and solutions posted
- 50 minutes
- Closed book
- No notes
- No calculators or electronic devices

Mergesort Recurrence

- $T(n)=2 T(n / 2)+n ; T(1)=1$ - O(n log n)
- Useful facts:
$-\log _{k} n=\log _{2} n / \log _{2} k$
$-k^{\log n}=n^{\log k}$

$$
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
$$

Unrolling the recurrence

$T(n)=a T(n / b)+f(n)$

Recursive Matrix Multiplication

Multiply 2×2 Matrices:
$\begin{array}{ll}\mid r & s \\ \mid t & u\end{array}|=| \begin{array}{lll}\mid a & b \mid & \mid e \\ |c| & g \\ |c| & d \mid & \mid f\end{array}$
$r=a e+b f$
$s=a g+b h$
$\mathrm{t}=\mathrm{ce}+\mathrm{df}$
$u=c g+d h$

A $N \times N$ matrix can be viewed as
a 2×2 matrix with entries that are (N/2) $\times(\mathrm{N} / 2)$ matrices.

The recursive matrix
multiplication algorithm recursively multiplies the ($\mathrm{N} / 2$) $\times(\mathrm{N} / 2)$ matrices and combines them using the equations for multiplying 2×2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

$T(n)=2 T(n / 2)+n^{2}$

$T(n)=2 T(n / 2)+n^{1 / 2}$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($\mathrm{x}<1$)
- The top level wins
- Balanced ($\mathrm{x}=1$)
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}^{3}+7 \mathrm{~T}(\mathrm{n} / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

Strassen's Algorithm

Multiply 2×2 Matrices:

$$
\begin{aligned}
& \begin{array}{ll}
\mid r & s \\
\mid t & u
\end{array}|=| \begin{array}{lll}
\mid a & b \mid & \mid e \\
|c| & g \\
\mathrm{c} & \mathrm{~d} \mid & \mid f \\
|f|
\end{array} \\
& \begin{array}{l}
p_{1}=(b-d)(f+h) \\
p_{2}=(a+d)(e+h)
\end{array} \\
& p_{3}=(a-c)(e+g) \\
& r=p_{1}+p_{2}-p_{4}+p_{6} \\
& \mathrm{~s}=\mathrm{p}_{4}+\mathrm{p}_{5} \\
& p_{4}=(a+b) h \\
& p_{5}=a(g-h) \\
& \mathrm{t}=\mathrm{p}_{6}+\mathrm{p}_{7} \\
& \mathrm{u}=\mathrm{p}_{2}-\mathrm{p}_{3}+\mathrm{p}_{5}-\mathrm{p}_{7} \\
& p_{6}=d(f-e) \\
& p_{7}=(c+d) e
\end{aligned}
$$

Where:

Recurrence for Strassen's Algorithms

- $T(n)=7 T(n / 2)+c n^{2}$
- What is the runtime?

BFPRT Recurrence

$$
T(n)<=T(3 n / 4)+T(n / 5)+20 n
$$

What bound do you expect?

