CSE 417 Algorithms and Complexity

Richard Anderson Lecture 13, Winter 2020 Recurrences

Announcements

- Midterm, Monday, February 10, 2020
 - Coverage through KT 5.2
 - Sample midterm questions will be posted
 - 50 minutes
 - Closed book
 - No notes
 - No calculators or electronic devices

2

Divide and Conquer • Recurrences, Sections 5.1 and 5.2 • Algorithms – Fast Matrix Multiplication – Counting Inversions (5.3) – Closest Pair (5.4) – Multiplication (5.5)

3

1

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

Divide and Conquer Array Mergesort(Array a){ n = a.Length; if (n <= 1) return a; b = Mergesort(a[0 .. n/2]); c = Mergesort(a[n/2+1 .. n-1]); return Merge(b, c); }

4

T(n) = 2T(n/2) + cn; T(1) = c;

6

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

9

7

Unroll recurrence for T(n) = 3T(n/3) + dn

10

$$T(n) = aT(n/b) + f(n)$$

 $T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth