

1

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)

3

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

Announcements

- Midterm, Monday, February 10, 2020
- Coverage through KT 5.2
- Sample midterm questions will be posted
- 50 minutes
- Closed book
- No notes
- No calculators or electronic devices

2

Divide and Conquer

Array Mergesort(Array a)\{
$\mathrm{n}=\mathrm{a}$.Length;
if $(\mathrm{n}<=1$)
return a;
$\mathrm{b}=$ Mergesort(a[0 .. $\mathrm{n} / 2]$);
$c=$ Mergesort(a[n/2+1.. $n-1])$;
return Merge(b, c);
\}

4

$$
T(n)=2 T(n / 2)+c n ; T(1)=c ;
$$

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

7

$T(n)=2 T(n / 2)+n ; T(1)=1 ;$

Substitution

Prove $T(n)<=n\left(\log _{2} n+1\right)$ for $n>=1$
Induction:
Base Case:

Induction Hypothesis:

9

Unroll recurrence for
$T(n)=3 T(n / 3)+d n$

Unrolling the recurrence

8

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

10

$$
T(n)=a T(n / b)+f(n)
$$

13
$T(n)=4 T(n / 2)+n$

15
$T(n)=2 T(n / 2)+n^{1 / 2}$

$$
T(n)=4 T(n / 2)+n
$$

Solving the recurrence exactly

$T(n)=2 T(n / 2)+n^{1 / 2}$

17

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

