

Announcements

- Midterm, Monday, February 10
- Sections 1.1 through 5.2
- Wednesday and Friday
- Divide and Conquer and Recurrences
- Homework 5, Due February 12 will not be graded

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components

e is the minimum cost edge

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_{1}=\left(u_{1}, v_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $T_{1}=T-\left\{e_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V -S for some set S.

Prove Prim's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>1$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Application: Clustering

- Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\min \left\{\operatorname{dist}(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}\right.$ in $\mathrm{S}_{1}, \mathrm{y}$ in $\left.\mathrm{S}_{2}\right\}$

○
0 -
。
-
○

- 0

Divide into 2 clusters

Divide into 3 clusters

\bigcirc
\bigcirc
\bigcirc

Distance Clustering Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|C|>K$
Let $e=(u, v)$ with u in C_{i} and v in C_{i} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

K-clustering

Finding a minimum branching

Idea for branching algorithm

- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat

What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r

Assume all vertices reachable from r

Also called an arborescence

Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

Finding a minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
- If this graph is a branching, then it is the minimum cost branching
- Otherwise, the graph contains one or more cycles
- Collapse the cycles in the original graph to super vertices
- Reweight the graph and repeat the process

Finding a minimum branching

Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

