CSE 417 Algorithms

Winter 2020

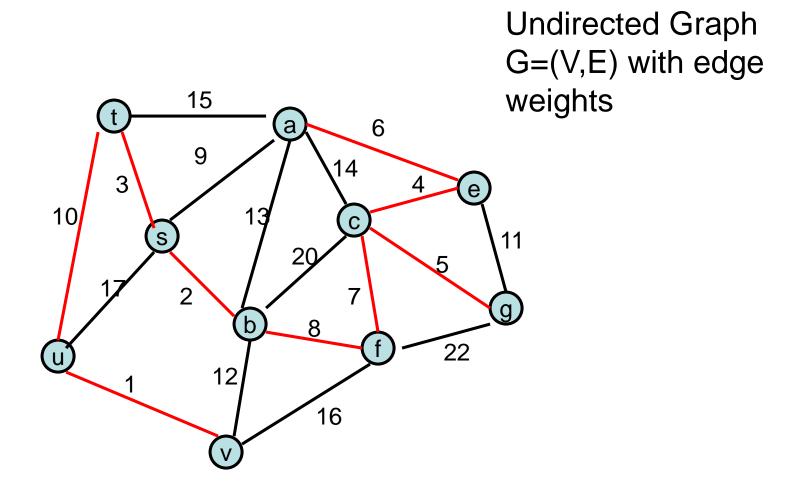
Lecture 12

Minimum Spanning Trees (Part II)

Announcements

- Midterm, Monday, February 10
- Sections 1.1 through 5.2
- Wednesday and Friday
 - Divide and Conquer and Recurrences
- Homework 5, Due February 12 will not be graded

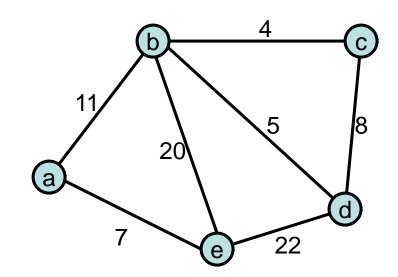
Minimum Spanning Tree



For simplicity, assume all edge costs are distinct

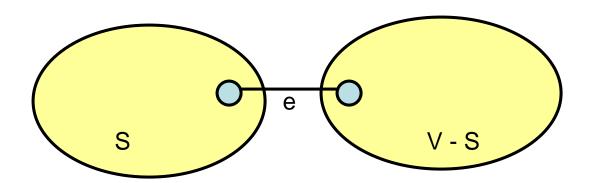
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components



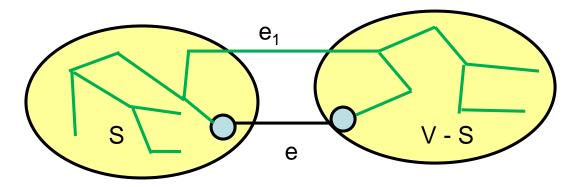
Edge inclusion lemma

- Let S be a subset of V, and suppose e =
 (u, v) is the minimum cost edge of E, with
 u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree



Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S



- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

```
S = { }; T = { };
while S != V

choose the minimum cost edge
  e = (u,v), with u in S, and v in V-S
  add e to T
  add v to S
```

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let
$$C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}\}$$

while $|C| > 1$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by C_i U C_j

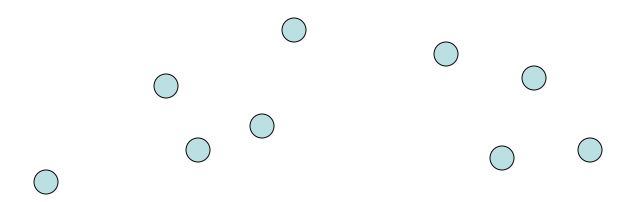
Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

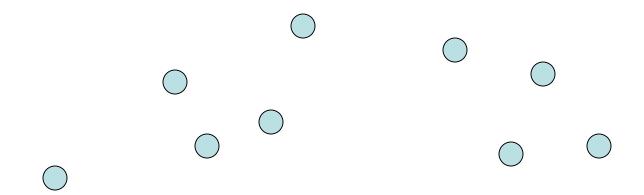
Application: Clustering

 Given a collection of points in an rdimensional space and an integer K, divide the points into K sets that are closest together

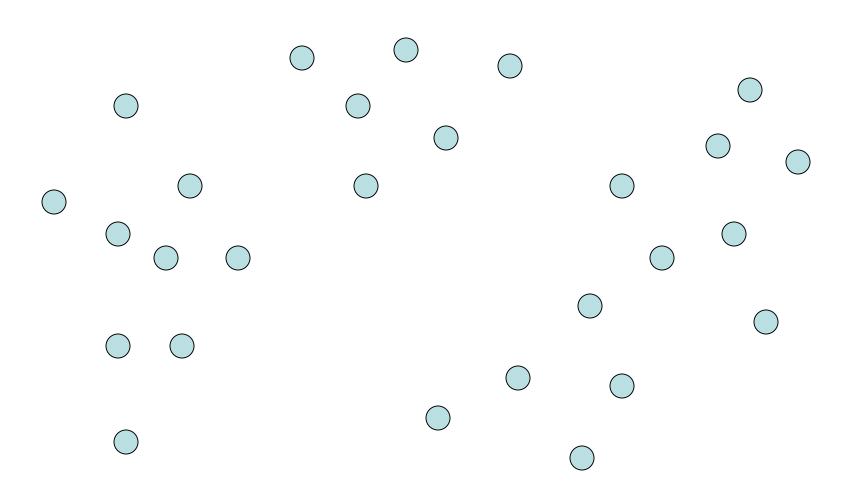


Distance clustering

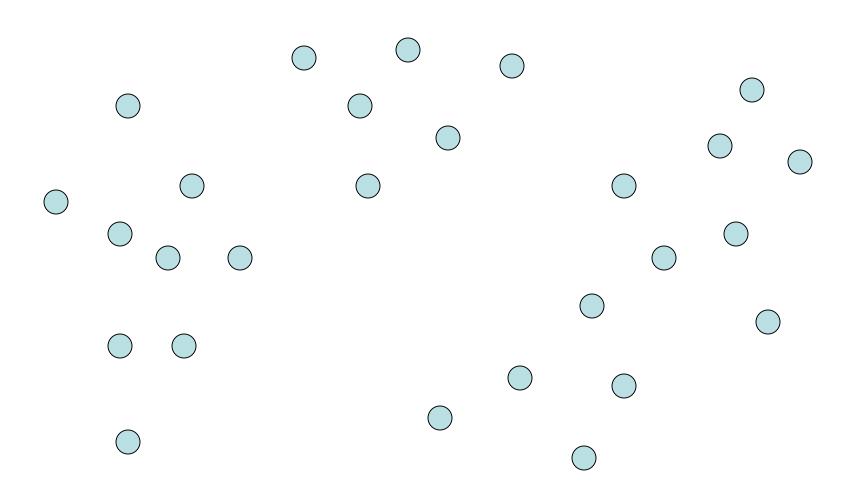
- Divide the data set into K subsets to maximize the distance between any pair of sets
 - dist (S_1, S_2) = min $\{dist(x, y) \mid x \text{ in } S_1, y \text{ in } S_2\}$



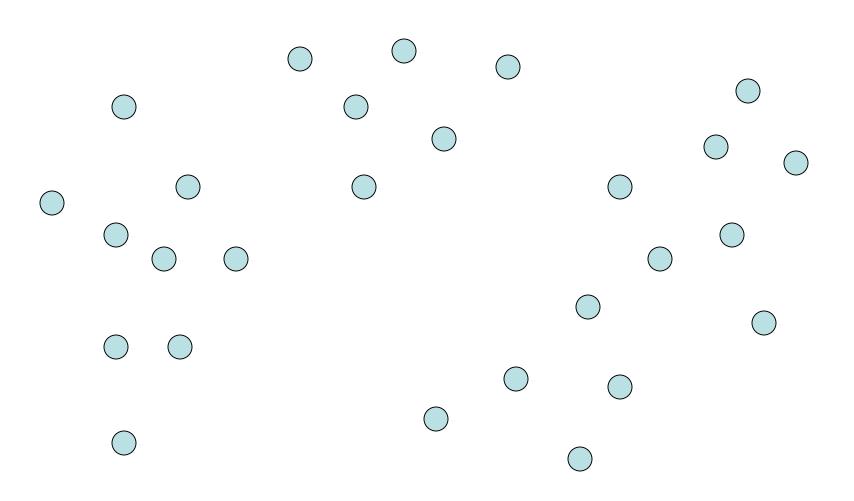
Divide into 2 clusters



Divide into 3 clusters



Divide into 4 clusters



Distance Clustering Algorithm

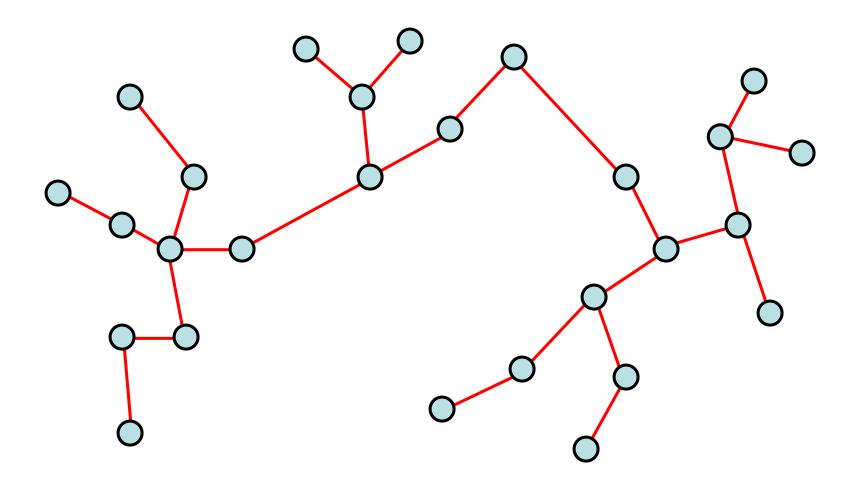
Let
$$C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}\}$$

while $|C| > K$

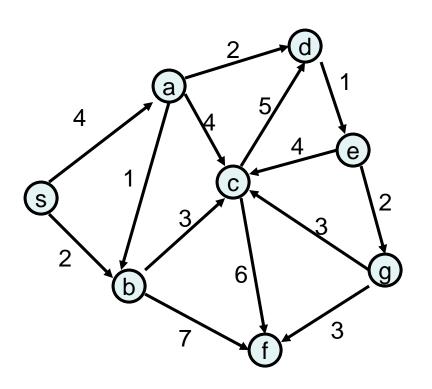
Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

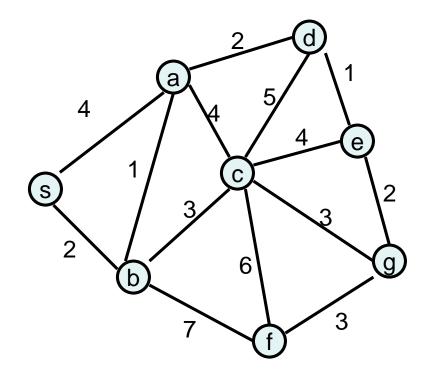
Replace C_i and C_j by C_i U C_j

K-clustering



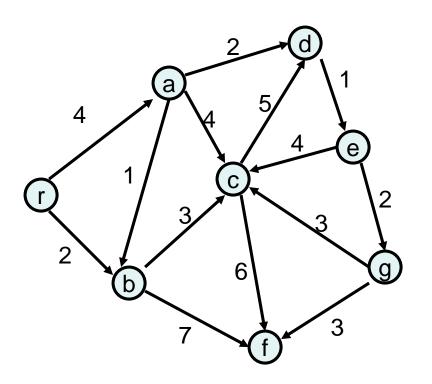
Shortest paths in directed graphs vs undirected graphs

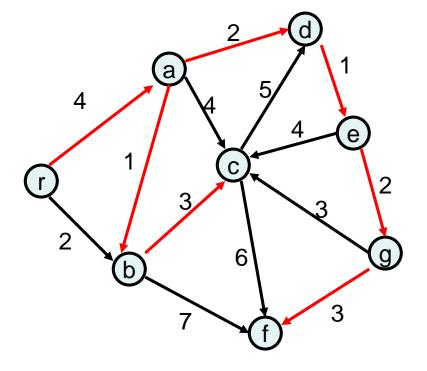




What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r



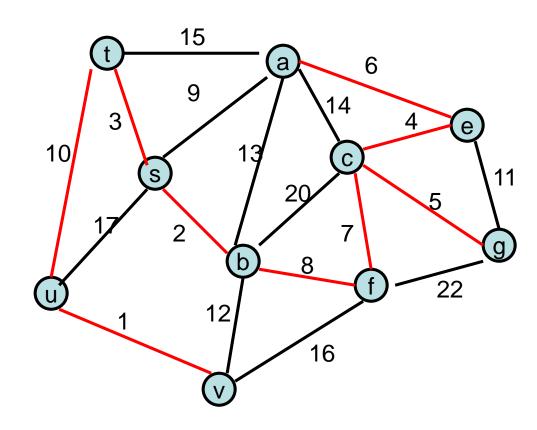






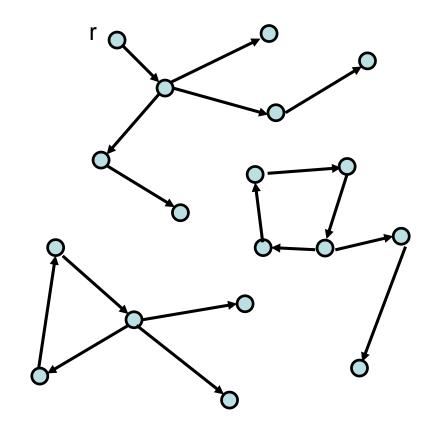
Another MST Algorithm

- Choose minimum cost edge into each vertex
- Merge into components
- Repeat until done



Idea for branching algorithm

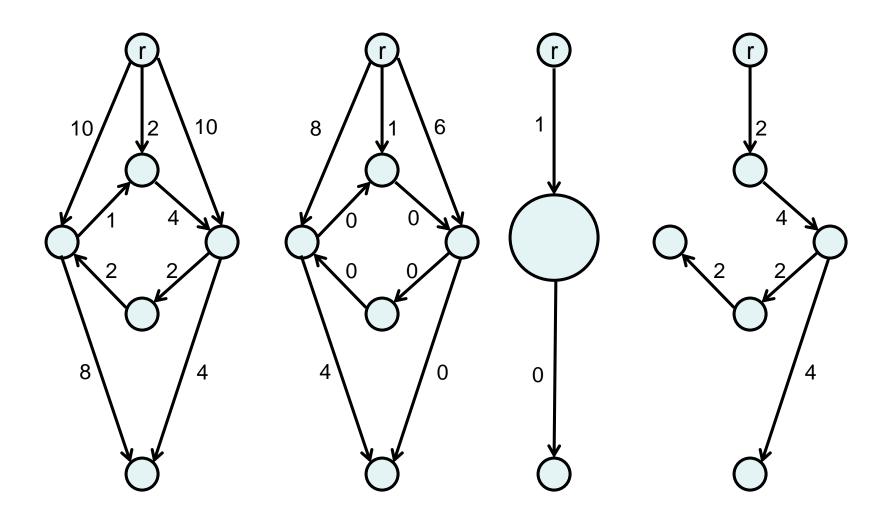
- Select minimum cost edge going into each vertex
- If graph is a branching then done
- Otherwise collapse cycles and repeat



- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching

- Consider the graph that consists of the minimum cost edge coming in to each vertex
 - If this graph is a branching, then it is the minimum cost branching
 - Otherwise, the graph contains one or more cycles
 - Collapse the cycles in the original graph to super vertices
 - Reweight the graph and repeat the process



Correctness Proof

Lemma 4.38 Let C be a cycle in G consisting of edges of cost 0 with r not in C. There is an optimal branching rooted at r that has exactly one edge entering C.

- The lemma justifies using the edges of the cycle in the branching
- An induction argument is used to cover the multiple levels of compressing cycles

