
CSE 417 Algorithms

Winter 2020
Lecture 11

Dijkstra’s algorithm

Dijkstra’s algorithm

“In 1956 I did two important things, I
got my degree and we had the festive
opening of the ARMAC. We had to
have a demonstration... For a
demonstration for noncomputing
people you have to have a problem
statement that non-mathematicians
can understand; they even have to
understand the answer. So I designed
a program that would find the
shortest route between two cities in
the Netherlands”

Image: http://cs-exhibitions.uni-klu.ac.at/index.php?id=29
Quote: https://dl.acm.org/doi/pdf/10.1145/1787234.1787249

http://cs-exhibitions.uni-klu.ac.at/index.php?id=29
https://dl.acm.org/doi/pdf/10.1145/1787234.1787249

• If P is a shortest path from s to v, and if t is on
the path P, the segment from s to t is a
shortest path between s and t

• WHY?
s

t
v

Single Source Shortest Path Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s
– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”
• Each vertex has a pointer to a predecessor on shortest

path

s

v

x

u
1 2

5

3 4

s

v

x

u
1

3

3

Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Assume all edges have non-negative cost

Dijkstra’s Algorithm

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Assume all edges have non-negative cost

Something is
missing from this
pseudo-code!

Single Source Shortest Path Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s
– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”
• Each vertex has a pointer to a predecessor on shortest

path

s

v

x

u
1 2

5

3 4

s

v

x

u
1

3

3

Correctness Proof

• Elements in S have the correct label

• Key to proof: when v is added to S, it has the
correct distance label.

s

y

v

x

u

Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v. Suppose P first leaves
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v] s

y

v

x

u

Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v. Suppose P first leaves
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v]

Notice: this is another exchange

argument

s

y

v

x

u

Dijkstra’s Algorithm
Implementation and Runtime

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

Edge costs are assumed to be non-negative

a

b

HEAP OPERATIONS

 n Extract Mins

m Heap Updates

Run Time

• Basic Heap Implementation
– O(log n) extract min and update key

– O((m + n) log n) run time

• Fancy data structures: Fibonacci Heaps
– O(m + n log n)

• Dense graphs
– O(n2)

What about Noam’s solution

● Runtime of BFS is O(m+n)
● So if the sum of the edge weights is W, the

runtime of the “dummy node” algorithm is

O(W+n)
This assumes the graph
has integer weights

Bottleneck Shortest Path

• Define the bottleneck distance for a path to
be the maximum cost edge along the path

s

v

x

u
6 5

5

3 4

2

Compute the bottleneck shortest paths

a

b

c
s

e

g

f

d

4

2

-3

6
6

5

4

-2
3

4

6

3

7

4
a

b

c
s

e

g

f

d

How do you adapt Dijkstra’s algorithm to
handle bottleneck distances

• Does the correctness proof still apply?

Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = { }; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
d[w] = min(d[w], max(d[v], c(v, w)))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v. Suppose P first leaves
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v] s

y

v

x

u

Negative Cost Edges

• Draw a small example with a negative cost
edge and show that Dijkstra’s algorithm fails
on this example

Shortest Paths

• Negative Cost Edges
– Dijkstra’s algorithm assumes positive cost edges

– For some applications, negative cost edges make sense

– Shortest path not well defined if a graph has a negative
cost cycle

a

b

c
s

e

g

f

4

2

-3

6

4

-2
3

4

6

3

7

-4

Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy
algorithms

• Provide proofs that the algorithms work

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Undirected Graph
G=(V,E) with edge
weights

Greedy Algorithms for Minimum
Spanning Tree

• [Jarnik/Prim/Dijkstra]
Extend a tree by including
the cheapest out going edge

• [Kruskal] Add the cheapest
edge that joins disjoint
components

• [ReverseDelete] Delete the
most expensive edge that
does not disconnect the
graph

4

115

7

20

8

22

a

b c

d

e

Greedy Algorithm 1
Jarnik’s/Prim’s/Djikstra’s Algorithm

• Extend a tree by including the cheapest out
going edge

9

2

13

6

4

11
5
`7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint
components

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does not
disconnect the graph

• Also by Kruskal

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Construct the MST
with the
reverse-delete
algorithm

Label the edges in
order of removal

Minimum Spanning Tree

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Why do the greedy algorithms work?

• For simplicity, assume all edge costs are
distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is
the minimum cost edge of E, with u in S and v
in V-S

• e is in every minimum spanning tree of G
– Or equivalently, if e is not in T, then T is not a

minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e

1
 = (u

1
, v

1
) with u

1
 in S and v

1

in V-S

• T
1
 = T – {e

1
} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge
between S and V-S

Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e

1
 = (u

1
, v

1
) with u

1
 in S and v

1

in V-S

• T
1
 = T – {e

1
} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge
between S and V-S

This is an exchange
argument

Negative edge weights

● Dijkstra’s algorithm (for shortest paths) fails
● Financial arbitrage corresponds to negative

weight cycles
● Minimum spanning tree algorithms don’t care
● Can you fix Dijkstra’s to work with negative

weights?

Errata

● Last week, we suggested that you could make
the dummy-node algorithm for shortest paths
(replace edges with weight n by n unweighted
edges) work for non-integer weights (e.g. √2)
by applying a function (e.g. squaring the
weights)
○ This doesn’t work!

