CSE 417 Algorithms

Winter 2020
Lecture 11

Dijkstra's algorithm

Dijkstra's algorithm

"In 1956 I did two important things, I got my degree and we had the festive opening of the ARMAC. We had to have a demonstration... For a demonstration for noncomputing people you have to have a problem statement that non-mathematicians can understand; they even have to understand the answer. So I designed a program that would find the shortest route between two cities in the Netherlands"

Image: http://cs-exhibitions.uni-klu.ac.at/index.php?id=29
Quote: https://dl.acm.org/doi/pdf/10.1145/1787234.1787249

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY?

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Assume all edges have non-negative cost

Dijkstra’s Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $d[v]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

Assume all edges have non-negative cost

Dijkstra’s Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $d[v]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

Something is missing from this pseudo-code!

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Correctness Proof

- Elements in S have the correct label
- Key to proof: when vis added to S, it has the correct distance label.

Proof

- Let v be a vertex in V-S with minimum $d[v]$
- Let P_{v} be a path of length $d[v]$, with an edge (u, v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)

$$
\begin{aligned}
& -P=P_{s x}+c(x, y)+P_{y v} \\
& -\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y] \\
& -\operatorname{Len}\left(P_{v v}\right)>=0 \\
& -\operatorname{Len}(P)>=d[y]+0>=d[v]
\end{aligned}
$$

Proof

- Let v be a vertex in V-S with minimum $d[v]$
- Let P_{v} be a path of length $d[v]$, with an edge (u, v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)

$$
\begin{aligned}
& -P=P_{s x}+c(x, y)+P_{y v} \\
& -\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y] \\
& -\operatorname{Len}\left(P_{y v}\right)>=0 \\
& -\operatorname{Len}(P)>=d[y]+0>=d[v]
\end{aligned}
$$

Notice: this is another exchange argument

Edge costs are assumed to be non-negative

Dijkstra's Algorithm

Implementation and Runtime

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V -S with minimum d[v]
Add v to S
For each w in the neighborhood of v

$$
d[w]=\min (d[w], d[v]+c(v, w))
$$

HEAP OPERATIONS
n Extract Mins
m Heap Updates

Run Time

- Basic Heap Implementation
$-\mathrm{O}(\log n)$ extract min and update key
$-O((m+n) \log n)$ run time
- Fancy data structures: Fibonacci Heaps
$-\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$
- Dense graphs
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$

What about Noam's solution

- Runtime of BFS is $\mathrm{O}(\mathrm{m}+\mathrm{n})$
- So if the sum of the edge weights is W, the runtime of the "dummy node" algorithm is $\mathrm{O}(\mathrm{W}+\mathrm{n})$

This assumes the graph
has integer weights

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

(a)
(s)
(c)
(b)
(9)
(

How do you adapt Dijkstra's algorithm to handle bottleneck distances

- Does the correctness proof still apply?

Dijkstra's Algorithm for Bottleneck Shortest Paths

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

$$
\begin{aligned}
& d[w]=\min (d[w], d[v]+c(v, w)) \\
& d[w]=\min (d[w], \max (d[v], c(v, w)))
\end{aligned}
$$

Proof

- Let v be a vertex in V-S with minimum $d[v]$
- Let P_{v} be a path of length $d[v]$, with an edge (u, v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)

$$
\begin{aligned}
& -P=P_{s x}+c(x, y)+P_{y v} \\
& -\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y] \\
& -\operatorname{Len}\left(P_{v v}\right)>=0 \\
& -\operatorname{Len}(P)>=d[y]+0>=d[v]
\end{aligned}
$$

Negative Cost Edges

- Draw a small example with a negative cost edge and show that Dijkstra's algorithm fails on this example

Shortest Paths

- Negative Cost Edges
- Dijkstra's algorithm assumes positive cost edges
- For some applications, negative cost edges make sense
- Shortest path not well defined if a graph has a negative cost cycle

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree

Undirected Graph $G=(V, E)$ with edge

Greedy Algorithms for Minimum Spanning Tree

- [Jarnik/Prim/Dijkstra]

Extend a tree by including the cheapest out going edge

- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the
 graph

Greedy Algorithm 1

Jarnik's/Prim's/Djikstra's Algorithm

- Extend a tree by including the cheapest out going edge

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Greedy Algorithm 3

Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph
- Also by Kruskal

Construct the MST with the
reverse-delete algorithm

Label the edges in
 order of removal

Minimum Spanning Tree

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose $e(u, v)$ is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
- Or equivalently, if e is not in T , then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $\mathrm{e}_{1}=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $T_{1}=T-\left\{e_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $\mathrm{e}_{1}=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $T_{1}=T-\left\{e_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

This is an exchange argument

Negative edge weights

- Dijkstra's algorithm (for shortest paths) fails
- Financial arbitrage corresponds to negative weight cycles
- Minimum spanning tree algorithms don't care
- Can you fix Dijkstra's to work with negative weights?

Errata

- Last week, we suggested that you could make the dummy-node algorithm for shortest paths (replace edges with weight n by n unweighted edges) work for non-integer weights (e.g. $\sqrt{ } 2$) by applying a function (e.g. squaring the weights)
- This doesn't work!

