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Dijkstra’s algorithm



Dijkstra’s algorithm

“In 1956 I did two important things, I 
got my degree and we had the festive 
opening of the ARMAC. We had to 
have a demonstration... For a 
demonstration for noncomputing 
people you have to have a problem 
statement that non-mathematicians 
can understand; they even have to 
understand the answer. So I designed 
a program that would find the 
shortest route between two cities in 
the Netherlands”

Image: http://cs-exhibitions.uni-klu.ac.at/index.php?id=29
Quote: https://dl.acm.org/doi/pdf/10.1145/1787234.1787249

http://cs-exhibitions.uni-klu.ac.at/index.php?id=29
https://dl.acm.org/doi/pdf/10.1145/1787234.1787249


• If P is a shortest path from s to v, and if t is on 
the path P, the segment from s to t is a 
shortest path between s and t

• WHY?  
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Single Source Shortest Path Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s
– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”
• Each vertex has a pointer to a predecessor on shortest 

path
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Dijkstra’s Algorithm

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Assume all edges have non-negative cost



Dijkstra’s Algorithm

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Assume all edges have non-negative cost

Something is 
missing from this 
pseudo-code!



Single Source Shortest Path Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s
– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”
• Each vertex has a pointer to a predecessor on shortest 

path
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Correctness Proof

• Elements in S have the correct label

• Key to proof:  when v is added to S, it has the 
correct distance label.
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Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v.  Suppose P first leaves 
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v] s
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Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v.  Suppose P first leaves 
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v]

Notice: this is another exchange

argument
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Dijkstra’s Algorithm
Implementation and Runtime

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
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Run Time

• Basic Heap Implementation
– O(log n) extract min and update key

– O((m + n) log n) run time

• Fancy data structures: Fibonacci Heaps
– O(m + n log n)

• Dense graphs
– O(n2)



What about Noam’s solution

● Runtime of BFS is O(m+n)
● So if the sum of the edge weights is W, the 

runtime of the “dummy node” algorithm is

O(W+n)
This assumes the graph 
has integer weights



Bottleneck Shortest Path

• Define the bottleneck distance for a path to 
be the maximum cost edge along the path
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Compute the bottleneck shortest paths
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How do you adapt Dijkstra’s algorithm  to 
handle bottleneck distances

• Does the correctness proof still apply?



Dijkstra’s Algorithm
for Bottleneck Shortest Paths

S = { };    d[s] = 0;     d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))
d[w] = min(d[w], max(d[v], c(v, w)))
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Proof

• Let v be a vertex in V-S with minimum d[v]

• Let P
v
 be a path of length d[v], with an edge (u,v)

• Let P be some other path to v.  Suppose P first leaves 
S on the edge (x, y)
– P = P

sx
 + c(x,y) + P

yv

– Len(P
sx

) + c(x,y) >= d[y]

– Len(P
yv

) >= 0

– Len(P) >= d[y] + 0 >= d[v] s
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Negative Cost Edges

• Draw a small example with a negative cost 
edge and show that Dijkstra’s algorithm fails 
on this example



Shortest Paths

• Negative Cost Edges
– Dijkstra’s algorithm assumes positive cost edges

– For some applications, negative cost edges make sense

– Shortest path not well defined if a graph has a negative 
cost cycle
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Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy 
algorithms

• Provide proofs that the algorithms work



Minimum Spanning Tree
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Greedy Algorithms for Minimum 
Spanning Tree

• [Jarnik/Prim/Dijkstra] 
Extend a tree by including 
the cheapest out going edge

• [Kruskal] Add the cheapest 
edge that joins disjoint 
components

• [ReverseDelete] Delete the 
most expensive edge that 
does not disconnect the 
graph
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Greedy Algorithm 1
Jarnik’s/Prim’s/Djikstra’s Algorithm

• Extend a tree by including the cheapest out 
going edge
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Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 
components
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Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does not 
disconnect the graph

• Also by Kruskal

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e
c

g

f
b

s

u

v

Construct the MST 
with the 
reverse-delete 
algorithm

Label the edges in 
order of removal



Minimum Spanning Tree
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Why do the greedy algorithms work?

• For simplicity, assume all edge costs are 
distinct



Edge inclusion lemma

• Let S be a subset of V, and suppose e = (u, v) is 
the minimum cost edge of E, with u in S and v 
in V-S

• e is in every minimum spanning tree of G
– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree

S V - S

e



Proof 

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e

1
 = (u
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, v

1
) with u

1
 in S and v
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in V-S

• T
1
 = T – {e

1
} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 
between S and V-S



Proof 

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e
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• T
1
 = T – {e

1
} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge 
between S and V-S

This is an exchange 
argument



Negative edge weights

● Dijkstra’s algorithm (for shortest paths) fails
● Financial arbitrage corresponds to negative 

weight cycles
● Minimum spanning tree algorithms don’t care
● Can you fix Dijkstra’s to work with negative 

weights?



Errata

● Last week, we suggested that you could make 
the dummy-node algorithm for shortest paths 
(replace edges with weight n by n unweighted 
edges) work for non-integer weights (e.g. √2) 
by applying a function (e.g. squaring the 
weights)
○ This doesn’t work!


