

CSE 417 Algorithms

Richard Anderson Winter 2020 Lecture 9 – Greedy Algorithms II

Announcements

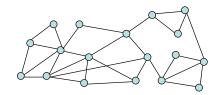
- · Today's lecture
 - Kleinberg-Tardos, 4.2, 4.3
- · Wednesday and Friday
 - Kleinberg-Tardos, 4.4, 4.5

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
 - Graph Coloring
 - Homework Scheduling
 - Optimal Caching

Greedy Graph Coloring

Theorem: An undirected graph with maximum degree K can be colored with K+1 colors

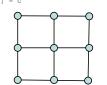


Coloring Algorithm, Version 1

Let k be the largest vertex degree Choose k colors

Color[v] = uncolored

for each vertex v $\text{ Let c be a color not used in } \mathbb{N}[v]$ $\text{Color}[v] \ = \ c$



Coloring Algorithm, Version 2

for each vertex v Color[v] = uncolored

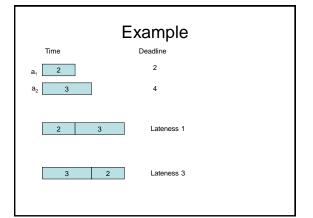
for each vertex v $\text{ Let } c \text{ be the smallest color not used in } \mathbb{N}[v]$ Color[v] = c

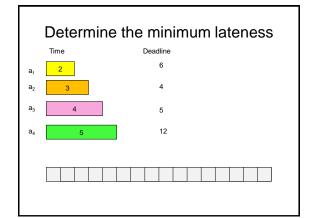
Homework Scheduling

- · Tasks to perform
- · Deadlines on the tasks
- · Freedom to schedule tasks in any order
- Can I get all my work turned in on time?
- If I can't get everything in, I want to minimize the maximum lateness

Scheduling tasks

- Each task has a length ti and a deadline di
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- · Goal minimize maximum lateness
 - Lateness: $L_i = f_i d_i$ if $f_i >= d_i$



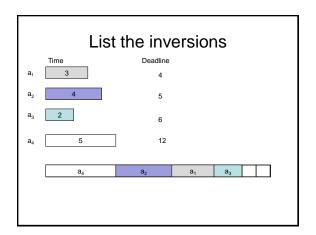


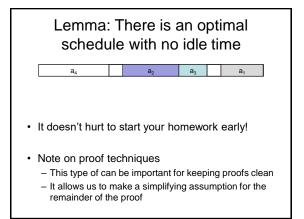
Greedy Algorithm

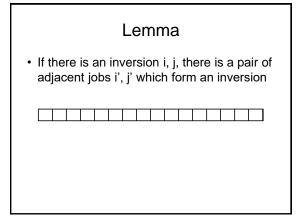
- · Earliest deadline first
- · Order jobs by deadline
- This algorithm is optimal

Analysis

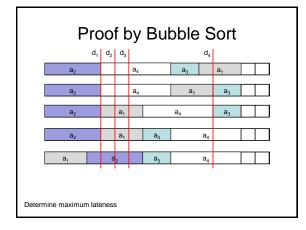
- Suppose the jobs are ordered by deadlines, $d_1 \le d_2 \le \ldots \le d_n$
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O











Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

· How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- · Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - · Register allocation in code generation
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

· Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution
- Look at the first place where they differ
- · Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Later this week

