

Computing Connected Components in O(n+m) time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Testing if a graph is strongly connected

• Pick a vertex x

- $-S_1 = \{ y \mid path from x to y \}$
- $-S_2 = \{ y \mid path from y to x \}$
- If $|S_1| = n$ and $|S_2| = n$ then strongly connected

Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v_1 , if it has in-degree 0 then done
 - If not, let (v_2,v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3 , v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each

Model of Random Graphs

- Undirected Graphs
 - Random Graph with n vertices and m edges, $\rm G_m$
 - Random Graph with n vertices where each edge has probability p, $\,\,{\rm G}_{\rm p}$
 - Models are similar when p = 2m / (n * (n 1))

```
for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++)
    if (random.NextDouble() < p)
    AddEdge(i, j);</pre>
```