

Announcements

- Homework 3 Available
- My office hours today: 2:30-3:30 pm.

Graph Theory

- $G=(V, E)$
- V: vertices, $|\mathrm{V}|=n$
- $\mathrm{E}:$ edges, $|\mathrm{E}|=\mathrm{m}$
- Undirected graphs
- Edges sets of two vertices
- Directed graphs
- Edges ordered pairs (u, v)
- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with
$\left(v_{i}, v_{i+1}\right)$ in ${ }^{\text {in }}$
- Simple Path
- cycle
- simple Cycle
- Neighborhood
- N(v)

Incidence Matrix

Adjacency List

Graph Algorithms (Review)

- Graph Search (Undirected or Directed graphs) - Find a path from s to t. $O(n+m)$ time.
- Breadth First Search (Undirected) $O(n+m)$ time - Non tree edges: Intra level edges or adjacent levels
- Depth First Search (Undirected) $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time - Non tree edges: Back edges
- Two coloring algorithm (Bipartite testing)
- Constructed BFS and color levels alternating colors
- Graph is bipartite iff no odd length cycles

Graph Connectivity

- An undirected graph is connected if there is a path between every pair of vertices x and y
- A connected component is a maximal connected subset of vertices

Connected Components

- Undirected Graphs

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A directed graph is strongly connected if for every pair of vertices x and y, there is a path from x to y, and there is a path from y to x

Strongly Connected

Not Strongly Connected

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v 's scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let (v_{2}, v_{1}) be an edge, if v_{2} has in-degree 0 then done
- If not, let ($\mathrm{v}_{3}, \mathrm{v}_{2}$) be an edge ...
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Random Graphs

- What is a random graph?
- Choose edges at random
- Interesting model of certain phenomena
- Mathematical study
- Useful inputs for graph algorithms

Model of Random Graphs

- Undirected Graphs
- Random Graph with n vertices and m edges, G_{m}
- Random Graph with n vertices where each edge has probability $\mathrm{p}, \mathrm{G}_{\mathrm{p}}$
- Models are similar when $p=2 m /\left(n^{*}(n-1)\right)$
for (int $i=0$; $i<n-1$; i++)
for (int $j=i+1 ; j<n ; j++$)
if (random.NextDouble() < p)
AddEdge (i, j) ;

