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CSE 421
Algorithms

Graph Algorithms

Winter 2020

Lecture 7

Announcements

• Homework 3 Available

• My office hours today:  2:30-3:30 pm.

Graph Theory

• G = (V, E)
– V:  vertices,  |V|= n
– E:  edges,  |E| = m 

• Undirected graphs
– Edges sets of two vertices 

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Path:  v1, v2, …, vk, with     

(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)
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Graph Algorithms (Review)

• Graph Search  (Undirected or Directed graphs)
– Find a path from s to t.  O(n + m) time.

• Breadth First Search   (Undirected)  O(n+m) time
– Non tree edges:  Intra level edges or adjacent levels

• Depth First Search  (Undirected) O(n+m) time
– Non tree edges: Back edges

• Two coloring algorithm  (Bipartite testing)
– Constructed BFS and color levels alternating colors

– Graph is bipartite iff no odd length cycles

Graph Connectivity

• An undirected graph is connected if there is a 
path between every pair of vertices x and y

• A connected component is a maximal 
connected subset of vertices

Connected Components

• Undirected Graphs
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Computing Connected Components in 
O(n+m) time

• A search algorithm from a vertex v can find all 
vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new component

Directed Graphs

• A directed graph is strongly connected if for 
every pair of vertices x and y,  there is a path 
from x to y,  and there is a path from y to x

Strongly Connected Not Strongly Connected

Testing if a graph is strongly connected

• Pick a vertex x

– S1 = { y | path from x to y }

– S2 = { y | path from y to x }

– If |S1| = n and |S2| = n then strongly connected

Strongly Connected Components

A set of vertices C is a strongly connected component 

if C is a maximal strongly connected subgraph

Strongly connected components can be 
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks
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Find a topological order for the following 
graph
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If a graph has a cycle, there is no 
topological sort

• Consider the first vertex 
on the cycle in the 
topological sort

• It must have an 
incoming edge B
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Definition:  A graph is 

Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a 
vertex with in-degree 0

• Proof:  

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
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Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are 
removed

• m edge removals at O(1) cost each

Random Graphs

• What is a random 
graph?

• Choose edges at 
random

• Interesting model of 
certain phenomena

• Mathematical study

• Useful inputs for graph 
algorithms
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Model of Random Graphs

• Undirected Graphs

– Random Graph with n vertices and m edges, Gm

– Random Graph with n vertices where each edge 
has probability p,  Gp

– Models are similar when p = 2m / (n * (n – 1))

for (int i = 0; i < n - 1; i++)

for (int j = i + 1; j < n; j++)

if (random.NextDouble() < p)

AddEdge(i, j);


