
1/20/2020

1

CSE 421
Algorithms

Graph Algorithms

Winter 2020

Lecture 7

Announcements

• Homework 3 Available

• My office hours today: 2:30-3:30 pm.

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Path: v1, v2, …, vk, with

(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

a

b

c

d

b c d

a d

a

a b

Adjacency List

1 1 1

1 0 1

1 0 0

1 1 0

Incidence Matrix

a
b

c
d

Graph Algorithms (Review)

• Graph Search (Undirected or Directed graphs)
– Find a path from s to t. O(n + m) time.

• Breadth First Search (Undirected) O(n+m) time
– Non tree edges: Intra level edges or adjacent levels

• Depth First Search (Undirected) O(n+m) time
– Non tree edges: Back edges

• Two coloring algorithm (Bipartite testing)
– Constructed BFS and color levels alternating colors

– Graph is bipartite iff no odd length cycles

Graph Connectivity

• An undirected graph is connected if there is a
path between every pair of vertices x and y

• A connected component is a maximal
connected subset of vertices

Connected Components

• Undirected Graphs

1/20/2020

2

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

• A directed graph is strongly connected if for
every pair of vertices x and y, there is a path
from x to y, and there is a path from y to x

Strongly Connected Not Strongly Connected

Testing if a graph is strongly connected

• Pick a vertex x

– S1 = { y | path from x to y }

– S2 = { y | path from y to x }

– If |S1| = n and |S2| = n then strongly connected

Strongly Connected Components

A set of vertices C is a strongly connected component

if C is a maximal strongly connected subgraph

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

142 143

311

341

351 333

332

312 431

421

451

1/20/2020

3

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

Definition: A graph is

Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are
removed

• m edge removals at O(1) cost each

Random Graphs

• What is a random
graph?

• Choose edges at
random

• Interesting model of
certain phenomena

• Mathematical study

• Useful inputs for graph
algorithms

1/20/2020

4

Model of Random Graphs

• Undirected Graphs

– Random Graph with n vertices and m edges, Gm

– Random Graph with n vertices where each edge
has probability p, Gp

– Models are similar when p = 2m / (n * (n – 1))

for (int i = 0; i < n - 1; i++)

for (int j = i + 1; j < n; j++)

if (random.NextDouble() < p)

AddEdge(i, j);

