

Announcements

- Reading
- Chapter 3
- Start on Chapter 4
- No class on Monday.
- Richard Anderson will hold extra office hours today
- Friday, Jan 17, 2:00-3:00, CSE2 344

Graph Theory

- $G=(V, E)$
- V: vertices, $|\mathrm{V}|=\mathrm{n}$
-E : edges, $|\mathrm{E}|=\mathrm{m}$
- Undirected graphs
- Edges sets of two vertices
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops
- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with
$\left(v_{i}, v_{i+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph search

- Find a path from s to t
$\mathrm{S}=\{\mathrm{s}\}$
while S is not empty
$u=\operatorname{Select}(S)$
visit u
foreach v in $N(u)$
if v is unvisited
$\operatorname{Add}(S, v)$
$\operatorname{Pred}[\mathrm{v}]=\mathrm{u}$
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 ...

Breadth First Search

- Build a BFS tree from s

$$
Q=\{s\}
$$

Level[s] = 1;
while Q is not empty
$u=$ Q.Dequeue()
visit u
foreach v in $N(u)$

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Graph search	
Breadth First Search	Depth First Search
$S=\{s\}$	$S=\{s\}$
while S is not empty	while S is not empty
$\mathrm{u}=$ Dequeue(S)	$\mathrm{u}=\mathrm{Pop}(\mathrm{S})$
if u is unvisited	if u is unvisited
visit u	visit u
foreach v in $\mathrm{N}(\mathrm{u})$	foreach v in $\mathrm{N}(\mathrm{u})$
Enqueue(S, v)	Push(S, v)

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v 's scc in $O(n+m)$ time

Find a topological order for the following graph

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let (v_{2}, v_{1}) be an edge, if v_{2} has in-degree 0 then done
- If not, let ($\mathrm{v}_{3}, \mathrm{v}_{2}$) be an edge ...
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

