CSE 421 Algorithms

Graphs
Winter 2020
Lecture 6

Announcements

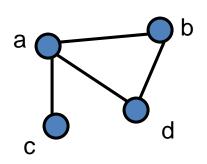
- Reading
 - Chapter 3
 - Start on Chapter 4
- No class on Monday.
- Richard Anderson will hold extra office hours today
 - Friday, Jan 17, 2:00 3:00, CSE2 344

Graph Theory

- G = (V, E)
 - V: vertices, |V| = n
 - E: edges, |E| = m
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

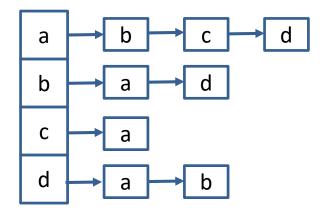
- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph Representation



$$V = \{ a, b, c, d \}$$

$$E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$$



	1	1	1
1		0	1
1	0		0
1	1	0	

Adjacency List

O(n + m) space

Incidence Matrix

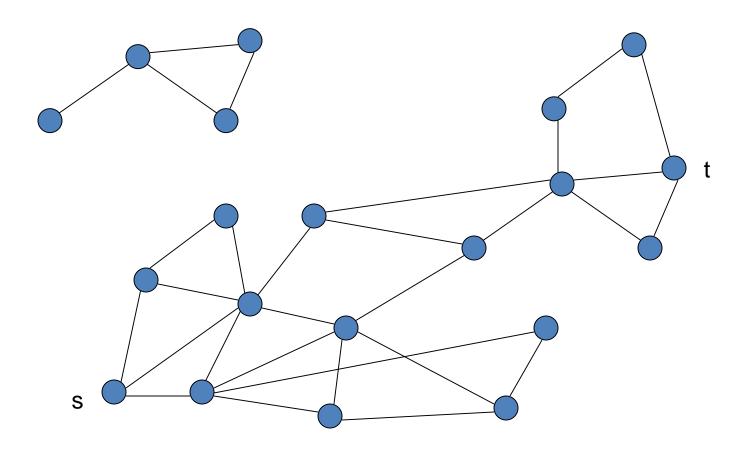
O(n²) space

Graph search

Find a path from s to t

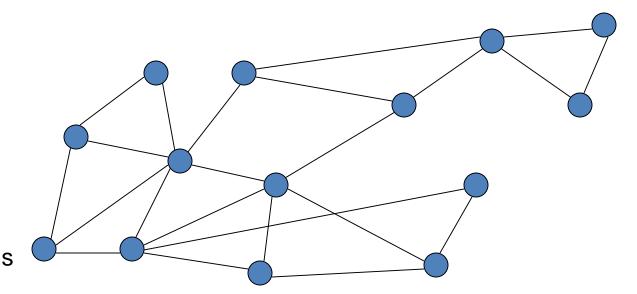
```
S = \{s\}
while S is not empty
         u = Select(S)
         visit u
         foreach v in N(u)
                   if v is unvisited
                             Add(S, v)
                             Pred[v] = u
                   if (v = t) then path found
```

Graph Search



Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .



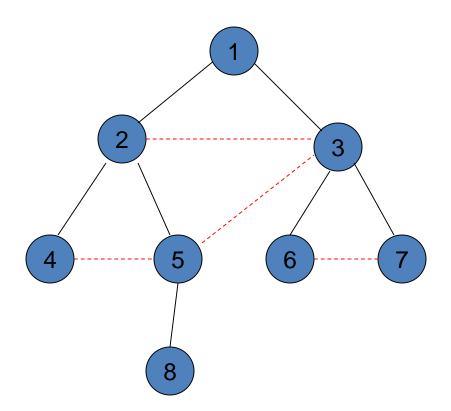
Breadth First Search

Build a BFS tree from s

```
Q = \{s\}
Level[s] = 1;
while Q is not empty
         u = Q.Dequeue()
         visit u
         foreach v in N(u)
                   if v is unvisited
                            Q.Enqueue(v)
                            Pred[v] = u
                            Level[v] = Level[u] + 1
```

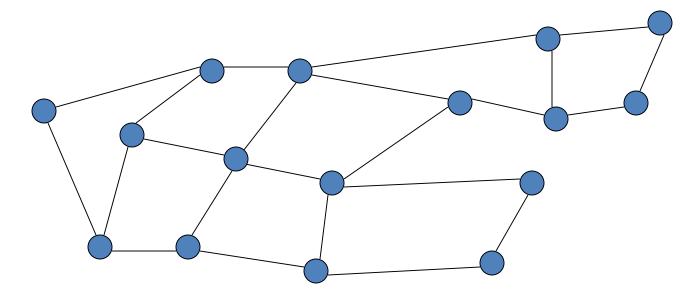
Key observation

 All edges go between vertices on the same layer or adjacent layers

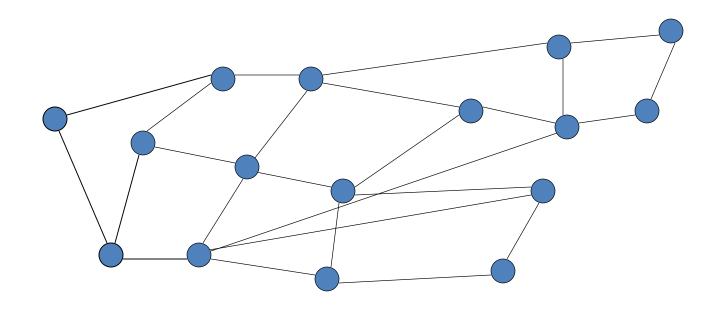


Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1 , V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored



Can this graph be two colored?



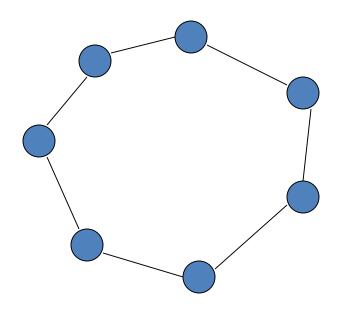
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite



Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

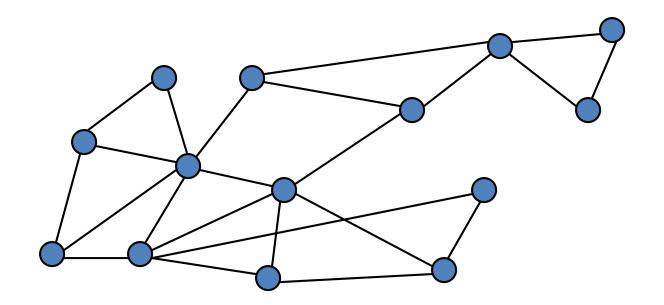
Intra-level edge: both end points are in the same level

Lemma 3

 If a graph has no odd length cycles, then it is bipartite

Graph Search

 Data structure for next vertex to visit determines search order



Graph search

```
Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)
```

Enqueue(S, v)

```
Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

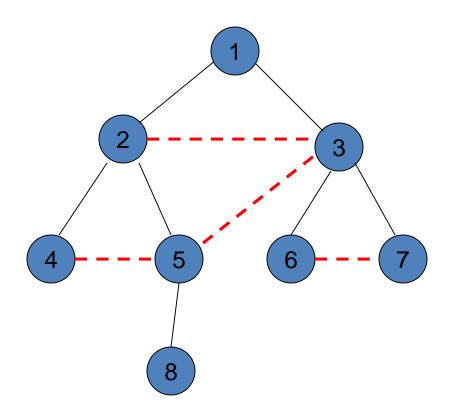
visit u

foreach v in N(u)

Push(S, v)
```

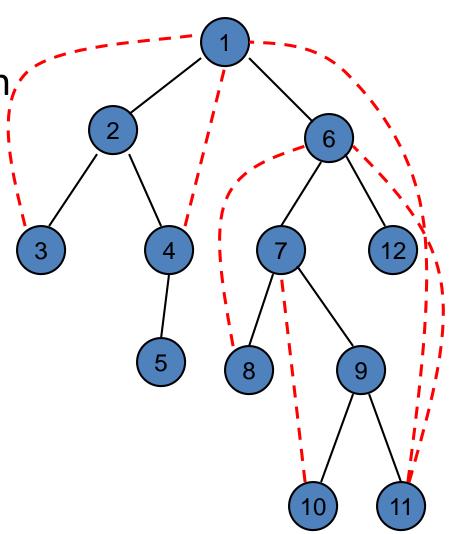
Breadth First Search

 All edges go between vertices on the same layer or adjacent layers



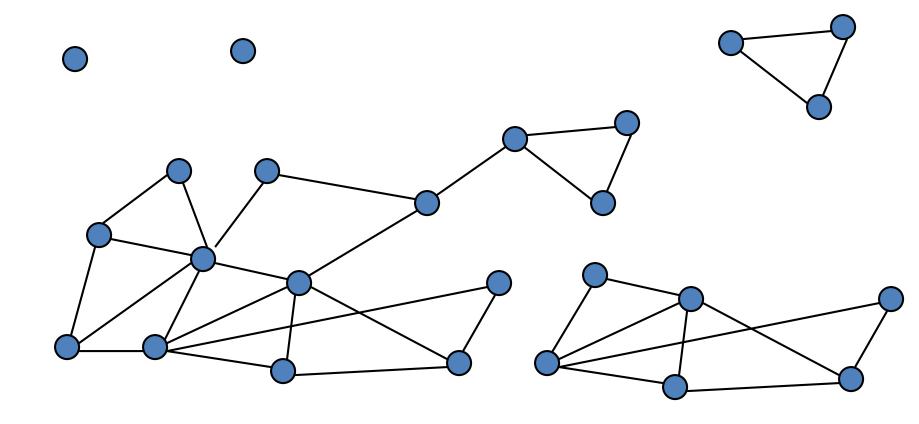
Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges



Connected Components

Undirected Graphs

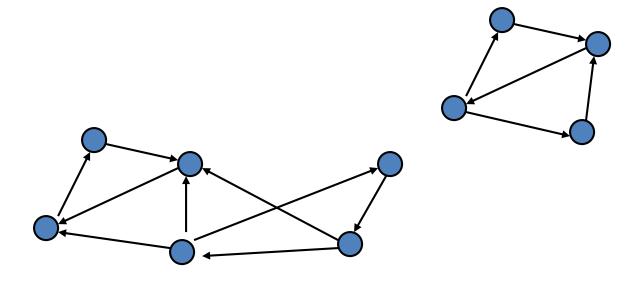


Computing Connected Components in O(n+m) time

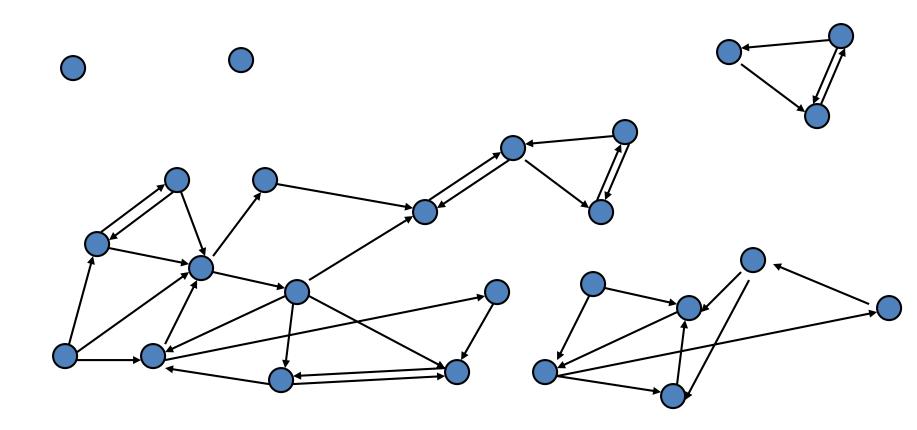
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.



Identify the Strongly Connected Components

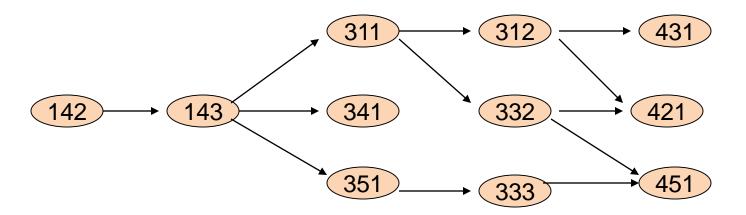


Strongly connected components can be found in O(n+m) time

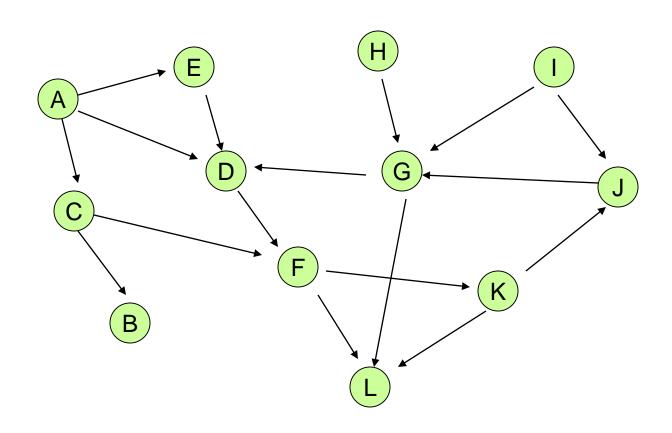
- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

 Given a set of tasks with precedence constraints, find a linear order of the tasks



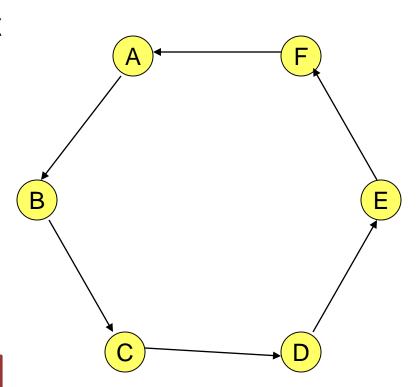
Find a topological order for the following graph



If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles



Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

Proof:

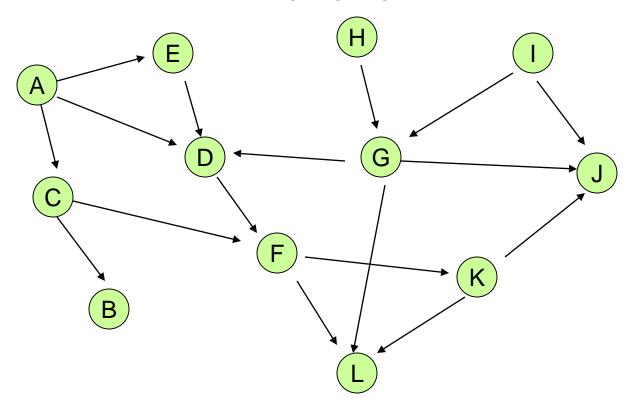
- Pick a vertex v_1 , if it has in-degree 0 then done
- If not, let (v₂, v₁) be an edge, if v₂ has in-degree 0
 then done
- If not, let (v_3, v_2) be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges



Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each