1/14/2020

CSE 417 Algorithms

Richard Anderson
Winter 2020
Lecture 5

Announcements

Worst Case Runtime Function

* Problem P: Given instance | compute a
solution S

* Alis an algorithm to solve P
* T(I) is the number of steps executed by A
on instance |

* T(n) is the maximum of T(I) for all
instances of size n

Ignore constant factors
» Constant factors are arbitrary
— Depend on the implementation

— Depend on the details of the model

» Determining the constant factors is tedious
and provides little insight

» Express run time as T(n) = O(f(n))

Formalizing growth rates

* T(n) is O(f(n)) [T:Z* > RY]
— If n is sufficiently large, T(n) is bounded by a
constant multiple of f(n)
— Exist ¢, ny, such that for n > ng, T(n) < ¢ f(n)

* T(n) is O(f(n)) will be written as:
T(n) = O(f(n))

— Be careful with this notation

Prove 3n2 + 5n + 20 is O(n?)

Letc =

Letny =

T(n) is O(f(n)) if there exist c, ny, such that for n > n,
T(n) <cf(n)




1/14/2020

Order the following functions in
increasing order by their growth rate
a) nlog*n
b) 2n2+ 10n
c) 2wio0
d) 1000n + log® n
e) nlOO
f) 3n
g) 1000 log°n
h) nl/2

Lower bounds

* T(n) is Q(f(n))
—T(n) is at least a constant multiple of f(n)
— There exists an ny, and ¢ > 0 such that
T(n) > &f(n) for all n > ng
» Warning: definitions of Q vary

* T(n) is ©(f(n)) if T(n) is O(f(n)) and
T(n) is Q(f(n))

Useful Theorems

« If lim (f(n) / g(n)) = ¢ for ¢ > 0 then
f(n) = ©(g(n))

If f(n) is O(g(n)) and g(n) is O(h(n)) then

Ordering growth rates

e Forb>1and x>0
—logPn is O(n¥)

Forr>1andd>0

f(n) is O(h(n)) —ndis O(M)
« If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))
Graph Theory Definitions
+ G=(V,E) + Path: vy, v,, ..., v, With (v;, Vi) iIn E
— V — vertices - g';glpe'e Path
— E—edges — Simple Cycle
* Undirected graphs + Neighborhood
— Edges sets of two vertices {u, v} —N(v)
+ Directed graphs + Distance
— Edges ordered pairs (u, v) » Connectivity
+ Many other flavors — Undirected .
— Edge / vertices weights . _I_—religrsected (strong connectivity)
— Parallel edges _ Rooted
— Self loops — Unrooted




1/14/2020

Graph Representation

b V={a, b,c,d}
a
ﬁ E={{a b} {a c}{a d} {b,d}}
d

a b c d 111

b a d 1 01

c a 11/0 0

d a b 1110
Adjacency List Incidence Matrix

Graph search

* Find a path fromstot

S ={s}
while S is not empty
u = Select(S)
visit u
foreach v in N(u)
if v is unvisited
Add(S, v)
Predv] =u
if (v = t) then path found

Breadth first search

» Explore vertices in layers
—sinlayer 1
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3. . .

Key observation

+ All edges go between vertices on the
same layer or adjacent layers

Bipartite Graphs

« A graph V is bipartite if V can be

partitioned into V,, V, such that all edges

go between V, and V,

« A graph is bipartite if it can be two colored

Can this graph be two colored?




1/14/2020

Algorithm

* Run BFS

Color odd layers red, even layers blue

« If no edges between the same layer, the
graph is bipartite

If edge between two vertices of the same

layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and
only if it has no odd cycles

Lemma l

« If a graph contains an odd cycle, it is not
bipartite

S
{ ]

O\O/

Lemma 2

« If a BFS tree has an intra-level edge, then
the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

« If a graph has no odd length cycles, then it
is bipartite

Graph Search

« Data structure for next vertex to visit
determines search order




1/14/2020

Graph search Breadth First Search
Breadth First Search Depth First Search o All edges go between vertices on the
S=t) s=t) same layer or adjacent layers
while S is not empty while S is not empty
u = Dequeue(S) u = Pop(S)
if uis unvisited if uis unvisited
visitu visitu
foreach v in N(u) foreach v in N(u)
Enqueue(S, v) Push(S, v)

Depth First Search

» Each edge goes
between vertices on the

1

same branch :
» No cross edges




