
CSE 417 Algorithms

Richard Anderson

Winter 2020

Lecture 5

Announcements

Worst Case Runtime Function

• Problem P: Given instance I compute a

solution S

• A is an algorithm to solve P

• T(I) is the number of steps executed by A

on instance I

• T(n) is the maximum of T(I) for all

instances of size n

Ignore constant factors

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious

and provides little insight

• Express run time as T(n) = O(f(n))

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+
 R+]

– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:

T(n) = O(f(n))

– Be careful with this notation

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,

T(n) < c f(n)

Let c =

Let n0 =

Order the following functions in

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2

Lower bounds

• T(n) is W(f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and e > 0 such that

T(n) > ef(n) for all n > n0

• Warning: definitions of W vary

• T(n) is Q(f(n)) if T(n) is O(f(n)) and

T(n) is W(f(n))

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then

f(n) = Q(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then

f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then

f(n) + g(n) is O(h(n))

Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)

Graph Theory

• G = (V, E)
– V – vertices

– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges

– Self loops

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Incidence MatrixAdjacency List

Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v = t) then path found

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the

same layer or adjacent layers

2

8

3

7654

1

Bipartite Graphs

• A graph V is bipartite if V can be

partitioned into V1, V2 such that all edges

go between V1 and V2

• A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the

graph is bipartite

• If edge between two vertices of the same

layer, then there is an odd cycle, and the

graph is not bipartite

Theorem: A graph is bipartite if and

only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not

bipartite

Lemma 2

• If a BFS tree has an intra-level edge, then

the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it

is bipartite

Graph Search

• Data structure for next vertex to visit

determines search order

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

Breadth First Search

• All edges go between vertices on the

same layer or adjacent layers

2

8

3

7654

1

Depth First Search

• Each edge goes

between vertices on the

same branch

• No cross edges

1

2

5

6

12743

8 9

10 11

