CSE 417 Algorithms

Richard Anderson
Winter 2020
Lecture 4
Reading

- Chapter 2.1, 2.2
- Chapter 3 (Mostly review)
- Start on Chapter 4

Homework Guidelines

- Submit homework with Canvas
- Submit problems separately

Deadine is go ith

- Describing an algorithm
- Pseudocode generally preferable to just English

Pseudocode generally preferable to just English

- But sometimes both methods combined work best
- Prove that your algorithm works

A proof is a "convincing argument"

- Give the run time for your algorithm
- Justify that the algorithm satisfies the runtime bound
- You may lose points for style
- Homework assignments will (probably) be worth the same amount

Maximum Independent Set

- Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 8

NP-Completeness

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
- Hamiltonian circuit
- Clique
- Subset sum
- Graph coloring

Are there even harder problems?

- Simple game:
- Players alternating selecting nodes in a graph
- Score points associated with node
- Remove nodes neighbors
- When neither can move, player with most points wins

Competitive Facility Location

- Choose location for a facility
- Value associated with placement
- Restriction on placing facilities too close together
- Competitive placement of facilities
- E.g., KFC and McDonald's
- P-Space complete instead of NP-Complete
- Appear to be much harder
- No obvious certificate
- G has a Maximum Independent Set of size 10
- Player 1 wins by at least 10 points

Complexity theory

- These problems are P-Space complete instead of NP-Complete
- Appear to be much harder
- No obvious certificate
- G has a Maximum Independent Set of size 10
- Player 1 wins by at least 10 points

Summary - Five Problems

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling

What does it mean for an algorithm to be efficient?

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n ! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

12	14	16	18	20

Ignoring constant factors

- Express run time as $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Why ignore constant factors?

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Formalizing growth rates

- $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
[T : Z $\left.{ }^{+} \rightarrow \mathrm{R}^{+}\right]$
- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$
- $T(n)$ is $O(f(n))$ will be written as:
$\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$
- Be careful with this notation

Prove $3 n^{2}+5 n+20$ is $O\left(n^{2}\right)$

Let $\mathrm{c}=$
Let $\mathrm{n}_{0}=$
$T(n)$ is $O(f(n))$ if there exist c, n_{0}, such that for $n>n_{0}$, $T(n)<c f(n)$

Order the following functions in increasing order by their growth rate
a) $n \log ^{4} n$
b) $2 n^{2}+10 n$
c) $2^{n / 100}$
d) $1000 n+\log ^{8} n$
e) n^{100}
f) 3^{n}
g) $1000 \log ^{10} n$
h) $n^{1 / 2}$

Lower bounds

- $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $\mathrm{T}(\mathrm{n})$ is $\Omega(\mathrm{f}(\mathrm{n}))$

Useful Theorems

- If $\lim (f(n) / g(n))=c$ for $c>0$ then $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{h}(\mathrm{n})$)
- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n)+g(n)$ is $O(h(n))$

Ordering growth rates

- For $b>1$ and $x>0$
$-\log ^{b} n$ is $O\left(n^{x}\right)$
- For $r>1$ and $d>0$
$-n^{d}$ is $O\left(r^{n}\right)$

