CSE 417

Algorithms and Computational Complexity

Richard Anderson
Winter 2020
Lecture 2

Stable Matching: Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $w_{1}, w_{2}, \ldots, w_{n}$
- Output
- Perfect matching M satisfying stability property (e.g., no instabilities) :
For all m', m", w', w"
If $\left(m^{\prime}, w^{\prime}\right) \in M$ and $\left(m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then
(m ' prefers w^{\prime} to $w^{\prime \prime}$) or ($w^{\prime \prime}$ prefers m" to m')
- Homework
- Due Wednesdays
- About 5 problems, sometimes programming
- Programming - your choice of language
- Target: 1 week turnaround on grading
- Exams (In class)
- Midterm, TBD
- Final, Wednesday, March 18, 8:30-10:20 am
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35
- Course web
- Instructor Office hours (CSE2 344):
- Monday 2:30-3:30, Wednesday 2:30-3:30

Course Mechanics

Announcements

- Course website
- https://courses.cs.washington.edu/courses/cse417/20wi/
- Homework due Wednesdays (strict)
- HW 1, Due Wednesday, January 15, 9:29 AM.
- Submit solutions on canvas
- You should be on the course mailing list
- But it will probably go to your uw.edu account

TA Office Hours

Yuqing Ai, Tuesday, 3:00-4:00, CSE2 131
Alex Fang, Thursday, 1:30-2:30, CSE2 151
Anny Kong, Monday, 3:30-4:30, TBA
Zhichao Lei, Monday, 4:30-5:30, CSE1 007
Ansh Nagda, Tuesday, 11:30-12:30, CSE2 152
Chris Nie, Friday, 3:30-4:30, CSE2 121

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse (have higher m-rank)
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

Claim: The algorithm stops in at most n^{2} steps

Example

$m_{1}: w_{1} w_{2} w_{3}$
$m_{2}: w_{1} w_{3} w_{2}$
$m_{3}: w_{1} w_{2} w_{3}$
$w_{1}: m_{2} m_{3} m_{1}$
$w_{2}: m_{3} m_{1} m_{2}$
$w_{3}: m_{3} m_{1} m_{2}$

Order: $m_{1}, m_{2}, m_{3}, m_{1}, m_{3}, m^{\prime}$

Claim: If an m reaches the end of its list, then all the w's are matched

When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M$ m_{1} prefers w_{2} to w_{1}

How could this happen?

A closer look

Stable matchings are not necessarily fair

How many stable matchings can you find?

Result

- Simple, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- Proving this type of result
- Reordering argument
- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks
$\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$
$\mathrm{~m}_{2}: \mathrm{w}_{1} \mathrm{w}_{3} \mathrm{w}_{2}$
$\mathrm{~m}_{3}: \mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$
$\mathrm{w}_{1}: \mathrm{m}_{2} \mathrm{~m}_{3} \mathrm{~m}_{1}$
$\mathrm{w}_{2}: \mathrm{m}_{3} \mathrm{~m}_{1} \mathrm{~m}_{2}$
$\mathrm{w}_{3}: \mathrm{m}_{3} \mathrm{~m}_{1} \mathrm{~m}_{2}$

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w , what is the expected M -rank?

Random Preferences

Suppose that the preferences are completely random
$m_{1}: w_{8} w_{3} w_{1} w_{5} w_{9} w_{2} w_{4} w_{6} w_{7} w_{10}$
$m_{2}: w_{7} w_{10} w_{1} w_{9} w_{3} w_{4} w_{8} w_{2} w_{5} w_{6}$
$w_{1}: m_{1} m_{4} m_{9} m_{5} m_{10} m_{3} m_{2} m_{6} m_{8} m_{7}$
$w_{2}: m_{5} m_{8} m_{1} m_{3} m_{2} m_{7} m_{9} m_{10} m_{4} m_{6}$
If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- M Proposal Algorithm
- Iterate over all m's until all are matched
- W Proposal Algorithm
- Change the role of m's and w's
- Iterate over all w's until all are matched

Generating a random permutation

public static int[] Permutation(int n, Random rand) \{
int[] arr = IdentityPermutation(n);
for (int $i=1$; $i<n$; i++) $\{$
int $j=r a n d . \operatorname{Next}(0, i+1)$;
int temp = arr[i];
$\operatorname{arr}[i]=\operatorname{arr}[j]$;
$\operatorname{arr}[j]=$ temp;
\}
return arr;
\}

- Find free m
- Find next available w
- If w is matched, determine m_{2}
- Test if w prefer m to m_{2}
- Update matching

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free $m \quad$ Executed at most n^{2} times w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(\mathrm{m}_{2}, \mathrm{w}\right)$
match (m, w)

$\mathrm{O}(1)$ time per iteration

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
- Model: graph and preference lists
- Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

