CSE 417 Algorithms and Computational Complexity

Richard Anderson Winter 2020 Lecture 2

Announcements

- Course website
 - https://courses.cs.washington.edu/courses/cse417/20wi/
- Homework due Wednesdays (strict)
 - HW 1, Due Wednesday, January 15, 9:29 AM.
 - Submit solutions on canvas
- You should be on the course mailing list
 - But it will probably go to your uw.edu account

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Programming your choice of language
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, TBD
- Final, Wednesday, March 18, 8:30-10:20 am
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35
- Course web
- Slides, Handouts
- Instructor Office hours (CSE2 344):
 Monday 2:30-3:30, Wednesday 2:30-3:30

TA Office Hours

Yuqing Ai, Tuesday, 3:00-4:00, CSE2 131 Alex Fang, Thursday, 1:30-2:30, CSE2 151 Anny Kong, Monday, 3:30-4:30, TBA Zhichao Lei, Monday, 4:30-5:30, CSE1 007 Ansh Nagda, Tuesday, 11:30-12:30, CSE2 152 Chris Nie, Friday, 3:30-4:30, CSE2 121

Stable Matching: Formal Problem

- - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities):

For all m', m", w', w" If $(m', w') \in M$ and $(m'', w'') \in M$ then (m' prefers w' to w") or (w" prefers m" to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m2, w accepts m, dumping m2 If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Does this work?

- · Does it terminate?
- · Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m_1 prefers w_2 to w_1

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m₁: W₁ W₂ W₃

(r

 (w_1)

m₂: w₂ w₃ w

C

w: m m m

w₁. III₂ III₃ III₁

 \mathbf{w}_2 : \mathbf{m}_3 \mathbf{m}_1 \mathbf{m}_2

 w_3 : m_1 m_2 m_3

How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

```
\begin{split} & m_1 \colon w_8 \ w_3 \ w_1 \ w_5 \ w_9 \ w_2 \ w_4 \ w_6 \ w_7 \ w_{10} \\ & m_2 \colon w_7 \ w_{10} \ w_1 \ w_9 \ w_3 \ w_4 \ w_8 \ w_2 \ w_5 \ w_6 \\ & \dots \\ & w_1 \colon m_1 \ m_4 \ m_9 \ m_5 \ m_{10} \ m_3 \ m_2 \ m_6 \ m_8 \ m_7 \\ & w_2 \colon m_8 \ m_1 \ m_3 \ m_2 \ m_7 \ m_9 \ m_{10} \ m_4 \ m_6 \end{split}
```

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Stable Matching Algorithms

- · M Proposal Algorithm
 - Iterate over all m's until all are matched
- · W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched

Generating a random permutation

```
public static int[] Permutation(int n, Random rand) {
   int[] arr = IdentityPermutation(n);

  for (int i = 1; i < n; i++) {
      int j = rand.Next(0, i + 1);
      int temp = arr[i];
      arr[i] = arr[j];
      arr[j] = temp;
   }
  return arr;
}</pre>
```

What is the run time of the Stable Matching Algorithm?

```
Initially all m in M and w in W are free While there is a free m Executed at most n^2 times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)
```

O(1) time per iteration

- Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- · Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution