CSE 417 Algorithms and Computational Complexity

Richard Anderson Winter 2020 Lecture 1

CSE 417 Course Introduction

- CSE 417, Algorithms and Computational Complexity
 - MWF, 9:30-10:20 am
 - CSE2 G01
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE2 344
 - Office hours: Monday 2:30-3:30, Wednesday 2:30-3:30
- Teaching Assistants
 - Yuqing Ai, Alex Fang, Anny Kong, Zhichao Lei, Ansh Nagda, Chris Nie

Announcements

- · It's on the course website
- · Homework due Wednesdays
 - HW 1, Due January 15, 2020
 - It's on the website (or will be soon)
- · Homework is to be submitted electronically
 - Due at 9:30 AM. No late days.
- · You should be on the course mailing list
 - But it will probably go to your uw.edu account

Textbook

- Algorithm Design
- · Jon Kleinberg, Eva Tardos
 - Only one edition
- Read Chapters 1 & 2
- Expected coverage:Chapter 1 through 7
- Book available at:
 - UW Bookstore (\$171.25/\$128.45)
 - Ebay (\$24.10)
 - Amazon (\$29.10 and up)
 - Electronic (\$74.99 / \$44.99)
 - Paperback (\$39.95)
 - PDF

Course Mechanics

- Homework
 - Due Wednesdays
 - Mix of written problems and programming
- Target: 1-week turnaround on grading
- Exams (In class)
 - Midterm, Approximately Friday, February 7
 - Final, Wednesday, March 18, 8:30-10:20 am
- Approximate grade weighting:
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts, Piazza Discussion Board

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- · Algorithm practice

Introductory Problem: Stable Matching

- · Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- · Perfect matching
- · Ranked preference lists
- Stability

Example (1 of 3)

 $m_1: w_1 w_2 \qquad m_1 \bigcirc w_1 \\ m_2: w_2 w_1 \\ w_1: m_1 m_2 \\ w_2: m_2 m_1 \qquad m_2 \bigcirc w_2 \\ \bigcirc w_2$

Example (2 of 3)

Example (3 of 3)

Formal Problem

- Input
 - Preference lists for m₁, m₂, ..., m_n
 - Preference lists for w₁, w₂, ..., w_n
- Output
 - Perfect matching M satisfying stability property:

If $(m', w') \in M$ and $(m'', w'') \in M$ then (m') prefers w' to w'') or (w'') prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m₂ w accepts m, dumping m₂
If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w) else

suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

E	xample	
m ₁ : w ₁ w ₂ w ₃	$m_{1\bigcirc}$	\bigcirc W ₁
m ₂ : w ₁ w ₃ w ₂ m ₃ : w ₁ w ₂ w ₃	-	
w ₁ : m ₂ m ₃ m ₁	$m_2 \bigcirc$	○ W ₂
w ₂ : m ₃ m ₁ m ₂ w ₃ : m ₃ m ₁ m ₂	$m_3 \bigcirc$	\bigcirc W ₃

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$$(m_1, w_1) \in M, (m_2, w_2) \in M$$

 $m_1 \text{ prefers } w_2 \text{ to } w_1$

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists