CSE 417 Algorithms and Computational Complexity

> Richard Anderson Winter 2020 Lecture 1

CSE 417 Course Introduction

- CSE 417, Algorithms and Computational Complexity
 - MWF, 9:30-10:20 am
 - CSE2 G01
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE2 344
 - Office hours: Monday 2:30-3:30, Wednesday 2:30-3:30
- Teaching Assistants
 - Yuqing Ai, Alex Fang, Anny Kong, Zhichao Lei, Ansh Nagda, Chris Nie

Announcements

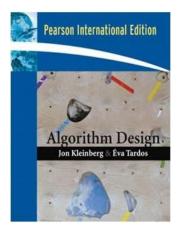
- It's on the course website
- Homework due Wednesdays

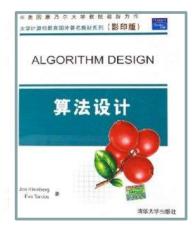
 HW 1, Due January 15, 2020
 It's on the website (or will be soon)
- Homework is to be submitted electronically
 Due at 9:30 AM. No late days.
- You should be on the course mailing list
 But it will probably go to your uw.edu account

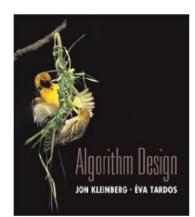
Textbook

- Algorithm Design
- Jon Kleinberg, Eva Tardos

 Only one edition
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7
- Book available at:
 - UW Bookstore (\$171.25/\$128.45)
 - Ebay (\$24.10)
 - Amazon (\$29.10 and up)
 - Electronic (\$74.99 / \$44.99)
 - Paperback (\$39.95)
 - PDF







Course Mechanics

- Homework
 - Due Wednesdays
 - Mix of written problems and programming
 - Target: 1-week turnaround on grading
- Exams (In class)
 - Midterm, Approximately Friday, February 7
 - Final, Wednesday, March 18, 8:30-10:20 am
- Approximate grade weighting: – HW: 50, MT: 15, Final: 35
- Course web

– Slides, Handouts, Piazza Discussion Board

All of Computer Science is the Study of Algorithms

How to study algorithms

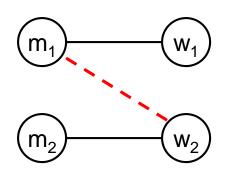
- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- Algorithm practice

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

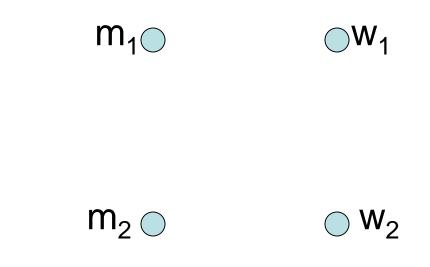
Formal notions

- Perfect matching
- Ranked preference lists
- Stability



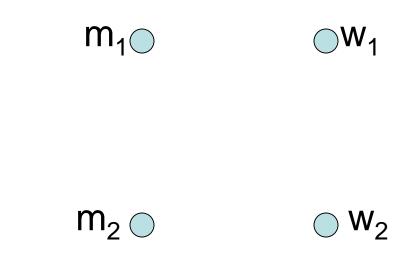
Example (1 of 3)

 $m_1: W_1 W_2$ $m_2: W_2 W_1$ $W_1: m_1 m_2$ $W_2: m_2 m_1$



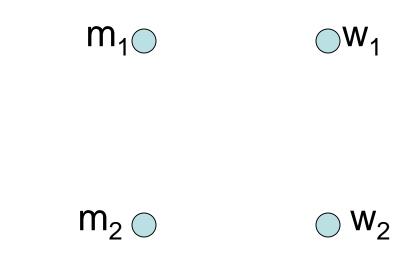
Example (2 of 3)

 $m_1: w_1 w_2$ $m_2: w_1 w_2$ $w_1: m_1 m_2$ $w_2: m_1 m_2$



Example (3 of 3)

 $m_1: W_1 W_2$ $m_2: W_2 W_1$ $W_1: m_2 m_1$ $W_2: m_1 m_2$



Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m", w") ∈ M then (m' prefers w' to w") or (w" prefers m" to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

- If w is matched to m₂
 - If w prefers m to m_2 w accepts m, dumping m_2
 - If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

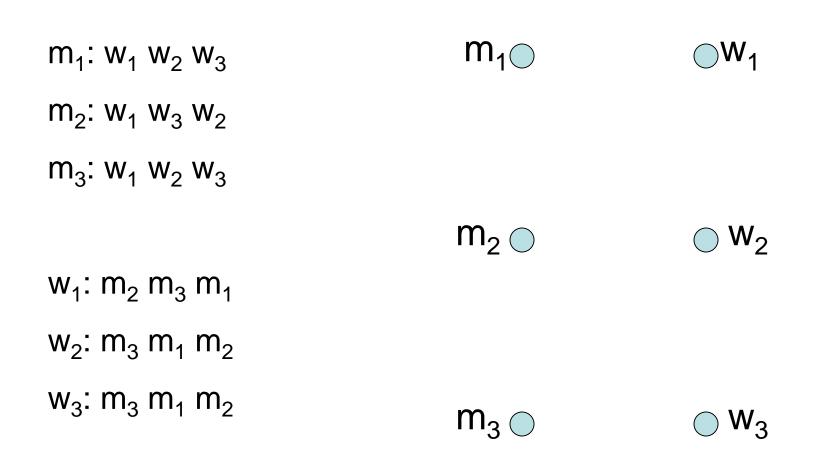
Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example



Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists