
University of Washington February 18, 2020
Department of Computer Science and Engineering
CSE 417, Winter 2020

Homework 7, Due Wednesday, February 26, 2020

On all problems provide justification of your answers. Provide a clear explanation of why your
algorithm solves the problem, as well as a justification of the run time. Since this assignment is
from the dynamic programming section - your algorithms should use dynamic programming!

Problem 1 (10 points) Weighted Independent Set on a Path:

The weighted independent set problem is: Given an undirected graph G = (V,E) with weights on
the vertices, find an independent set of maximum weight. A set of vertices I is independent if there
are no edges between vertices in I. This problem is known to be NP-Complete.

For a simpler problem, consider a graph that is a path, where the vertices are v1, v2, . . . , vn, with
edges between vi and vi+1. Suppose that each node vi has an associated weight wi. Give an
algorithm that takes an n vertex path with weights and returns an independent set of maximum
total weight. The run time of the algorithm should be polynomial in n.

Problem 2 (10 points) Task Choice:

Suppose that each week you have the choice of a high stress task, a low stress task, or no task. If
you take a high stress task in week i, you are not allowed to take any task in week i+1. For n weeks,
the high stress tasks have payoff h1, . . . , hn, and the low stress tasks have payoff l1, . . . , ln, and not
doing a task has payoff 0. Give an algorithm which given the two lists of payoffs, maximizes the
value of tasks that are performed over n weeks. The run time of the algorithm should be polynomial
in n.

Problem 3 (10 points) Word segmentation:

(This problem is based on problem 5 on Page 316 of the text without the excessive verbiage.)
The word segmentation problem is: given a string of characters Y = y1y2 . . . yn, optimally divide
the string into consecutive characters that form words. (The motivation is that you are given at
text string without spaces and have to figure out what the words are. For example, “meetateight”
could be “meet ate ight”, “me et at eight” or “meet at eight”.) The problem is to find best
possible segmentation. We assume we have a function Quality which returns an integer value of
the goodness of a word, with strings that correspond to words getting a high score and strings that
do not correspond to words getting a low score. The overall quality of a segmentation is the sum
of the qualities of the individual.

Give an dynamic programming algorithm to compute the optimal segmentation of a string. You
can assume that calls to the function Quality take constant time and return an integer value.



Programming Problem 4 (10 points) Greedy Algorithms for Interval Scheduling:

This programming problem and the next will look at the interval scheduling problem with the
objective function of maximizing the sum of the lengths of selected intervals: The input for an
interval scheduling problem is a set of intervals I = {i1, . . . , in} where ik has start time sk, and
finish time fk and the output is a set of non-overlapping intervals that has the maximum possible
sum of lengths.

Implement routines for the following:

a) A random interval generator. Given integer parameters n, L, and r, generate n intervals,
where each interval has a starting position uniformly chosen from [1, L] and length uniformly
chosen from [1, r].

b) A greedy algorithm for interval scheduling which selects intervals in earliest starting time first
order.

c) A greedy algorithm for interval scheduling which selects intervals in longest length first order.

For this problem, submit your code for the three routines.

Programming Problem 5 (10 points) Dynamic Programming for Interval Scheduling:

Implement a dynamic programming algorithm that optimally solves the Interval Scheduling problem
to maximize the sum of the lengths of non-overlapping intervals.

Evaluate the performance of the dynamic programming algorithm compared with the two greedy
algorithms from Problem 4 on randomly generated intervals. In your test generator use n = 10, 000,
L = 1, 000, 000 and r = 2, 000.

For this problem, submit your code for the dynamic programming problem along with the output
from a series of test runs on all three algorithms.


