
University of Washington January 15, 2020
Department of Computer Science and Engineering
CSE 417, Winter 2020

Homework 2, Due Wednesday, January 22, 9:29 am, 2020

Turnin instructions: Electronics submission on canvas using the CSE 417 canvas site. Each num-
bered problem is to be turned in as a separate PDF.

Problem 1 (10 points):

Order the following functions in increasing order by their growth rate:

1. n3

2. (log n)logn

3. n
√
logn

4. 2n/10

Explain how you determined the ordering.

Problem 2 (10 points):

Prove that 2n2 + 4n log n + 6n + 20 log2 n + 11 is O(n2).

Problem 3 (10 points):

The diameter of an undirected graph is the maximum distance between any pair of vertices. If a
graph is not connected, its diameter is infinite. Let G be an n node undirected graph, where n is
even. Suppose that every vertex has degree at least n/2. Show that G has diameter at most 2.

Problem 4 (10 points):

Let G = (V,E) be an undirected graph with n vertices such that the degree of every vertex of G
is at most k. Give an algorithm to color the edges of G with at most 2k − 1 colors such that any
pair of edges e and f which are incident to the same vertex have distinct colors.

Programming Problem 5 (10 points):

The Coupon Collector problem is: There are n types of coupons. Each time you get a coupon,
you are given a coupon of a random type (with equal probability of receiving each coupon). The
question is how many coupons do you expect to receive, on the average, before you have collected
the full set of coupons.

Your programming assignment is to write a simulator of the Coupon Collector Problem, and run
simulations to see how long how many coupons are needed to complete the set. You should run
your program for values of n up to 4, 000. Determine the average number of coupons required to
complete the set. How does this relate to the results of programming problem 5 of homework 1?
(Consider both the total number of coupons C, as well as C/n.)



Programming Problem 6 (10 points):

We now consider a variation of the Coupon Collector Problem where there are n types of coupons,
and each coupon has a value associated with it. The value of a coupon is a random integer between
1 and n. You want to put together a complete set of coupons of minimum value, so that of all of the
coupons you receive of a certain type ci, you keep the one of minimum value. You collect coupons
until you have a full set of coupons and then you determine the value of the set of coupons.

Your programming assignment is to write a simulator of the Coupon Collector problem with values,
and run simulations to see what the average value is for a complete set of coupons. You should run
this up to n = 4, 000. How does this relate to the results of programming problem 5 of homework
1? (Consider both the total value of the coupons V , as well as V/n.)


