CSE 4I7: Algorithms and Computational Complexity

W. L. Ruzzo

Dynamic Programming, I:

Fibonacci \& Stamps

Dynamic Programming

Outline:
General Principles
Easy Examples - Fibonacci, Licking Stamps
Meatier examples
Weighted interval scheduling
String Alignment
RNA Structure prediction
Maybe others

Some Algorithm Design Techniques, I: Greedy

Greedy algorithms
Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
e.g. closest pair in TSP search

Usually simple, fast if they work (but often don't)

Some Algorithm Design Techniques, II: D \& C

Divide \& Conquer
Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution
Typically, sub-problems are disjoint, and at most
a constant fraction of the size of the original
e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm

Some Algorithm Design Techniques, III: DP

Dynamic Programming
Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution
Useful when the same sub-problems show up repeatedly in the solution
Often very robust to problem re-definition
Sometimes gives exponential speedups

"Dynamic Programming"

Program - A plan or procedure for dealing with some matter

- Webster's New World Dictionary

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

A very simple case:

Computing Fibonacci Numbers

Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=1$

$$
01123581321345589144233 \text {... }
$$

Recursive algorithm:
FiboR(n)

$$
\text { if } \mathrm{n}=0 \text { then return(} 0 \text {) }
$$

else if $n=I$ then return(I)
else return(FiboR(n-I)+FiboR(n-2))
Note:
Exponential $\uparrow: F(n) \approx \Phi^{n} / \sqrt{5}, \Phi=(1+\sqrt{5}) / 2 \approx 1.618 \ldots$

Call tree - start

Full call tree

Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don't re-compute:
Save answers from all recursive calls
Before a call, test whether answer saved
Dynamic Programming (not memoized)
Pre-compute, don't re-compute:
Recursion becomes iteration (top-down \rightarrow bottom-up)
Anticipate and pre-compute needed values
DP usually cleaner, faster, simpler data structs

Fibonacci - Dynamic Programming Version

FiboDP(n): $\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[\mathrm{I}] \leftarrow \mathrm{I}$
for $I=2$ to n do
$\mathrm{F}[\mathrm{i}] \leftarrow \mathrm{F}[\mathrm{i}-\mathrm{I}]+\mathrm{F}[\mathrm{i}-2]$
end
return $(\mathrm{F}[\mathrm{n}])$
For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed

Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the internal details of how the sub-problems are solved
"principle of optimality" - more below, e.g. slide I9

Example: Making change

Given:

Large supply of $1 \phi, 5 \not \subset, 10 \not \subset, 25 \not \subset, 50 \not \subset$ coins
An amount N
Problem: choose fewest coins totaling N

Cashier's (greedy) algorithm works:
Give as many as possible of the next biggest denomination

Licking Stamps

Given:
Large supply of $5 \not \subset, 4 \not \subset$, and I $\not \subset$ stamps
An amount N
Problem: choose fewest stamps totaling N

A Few Ways To Lick 27ф

\# of 5申 stamps	\# of 4 $\not \subset$ stamps	\# of I申 stamps	total number
5	0	2	7
4	1	3	8
3	3	0	6

Morals: Greed doesn't pay; success of "cashier's alg" depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

```
for a = 0, .., N {
    for b = 0, ...,N {
    for c = 0, ..,N {
        if (5a+4b+c == N && a+b+c is new min)
            {retain (a,b,c);}}}
output retained triple;
```

Time: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Proof: if not, we could improve the solution for N by using opt for $N-v$. Alg: for $i=1$ to n :

New Idea: Recursion

Time: $>3^{\mathrm{N} / 5}$

Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Time: $\mathrm{O}(\mathrm{N})$

Finding How Many Stamps

Finding Which Stamps:

 Trace-Back-

$$
O P T(i)=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+O P T(i-1) & i \geq 1 \\
1+O P T(i-4) & i \geq 4 \\
1+O P T(i-5) & i \geq 5
\end{array}\right\}
$$

Trace-Back

Way I: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what's needed
TraceBack(i):
if $i==0$ then return;
for $d \operatorname{in~}\{1,4,5\}$ do
if OPT[i] == $1+$ OPT[i - d]
then break;
print d;
TraceBack(i - d);

Complexity Note

$\mathrm{O}(\mathrm{N})$ is better than $\mathrm{O}\left(\mathrm{N}^{3}\right)$ or $\mathrm{O}\left(3^{\mathrm{N} / 5}\right)$
But still exponential in input size ($\log \mathrm{N}$ bits)
(E.g., miserable if N is 64 bits $-\mathrm{c} \cdot 2^{64}$ steps \& 2^{64} memory.)

Note: can do in $\mathrm{O}(\mathrm{I})$ for fixed denominations, e.g., $5 \phi, 4 \phi$, and I ϕ (how?) but not in general (i.e., when denominations and total are both part of the input). See "NP-Completeness" later.

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?
"Optimal Substructure"
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)
"Repeated Subproblems"
The same subproblems arise in various ways

