
CSE 417
Algorithms

Huffman Codes:
An Optimal Data Compression

Method

1

2

Compression Example

100k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
23 > 6; 3 bits/char: 300kbits

Why?
Storage, transmission vs 5 Ghz cpu

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

3

Compression Example

100k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits

23 > 6; 3 bits/char: 300kbits
better:
2.52 bits/char 74%*2 +26%*4: 252kbits
Optimal?

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

E.g.:
a 00
b 01
d 10
c 1100
e 1101
f 1110

Why not:
00
01
10
110
1101
1110

1101110 = cf or ec?

4

Data Compression

Binary character code (“code”)
each k-bit source string maps to unique code word
(e.g. k=8)

“compression” alg: concatenate code words for
successive k-bit “characters” of source

Fixed/variable length codes
all code words equal length?

Prefix codes
no code word is prefix of another (unique decoding)

Prefix Codes = Trees

f a b

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

1 0 1 0 0 0 0 0 1

f a b

100

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 1

0 10 1

0 1

100

86

a:45

14

e:9b:13

28

c:12 d:16

14

f:5

0 1

0 1

0 10 10 1
58

0

1 1 0 0 0 1 0 1
5

6

Greedy Idea #1

Put most frequent
under root, then recurse …

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

.. .. .

7

Greedy Idea #1

Top down: Put most frequent
under root, then recurse

Too greedy:
unbalanced tree
.45*1 + .16*2 + .13*3 … = 2.34
not too bad, but imagine if all
freqs were ~1/6:
(1+2+3+4+5+5)/6=3.33

a:45

100

d:16

55

b:13

29

. . .

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

8

Greedy Idea #2

Top down: Divide letters
into 2 groups, with ~50%
weight in each; recurse
(Shannon-Fano code)

Again, not terrible
2*.5+3*.5 = 2.5

But this tree
can easily be
improved! (How?)

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9

9

Greedy idea #3

Bottom up: Group
least frequent letters
near bottom

100

f:5

14

. . .

e:9
c:12

25

b:13

...

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

(b)

a:45d:16c:12 b:13

f:5

14

e:9
0 1

(a)

a:45d:16c:12 b:13f:5 e:9

(f)

100

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 1

0 10 1

0 1

(e)

55a:45

30

f:5

c:12

25

b:13 d:1614

e:9

0 1

0 10 1

0 1

(d)

a:4530

f:5

c:12

25

b:13 d:1614

e:9

0 10 1

0 1

(c)

a:45d:16

c:12

25

b:13
0 1

f:5

14

e:9
0 1

.45*1 + .41*3 + .14*4 = 2.24 bits per char 10

11

Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq

while queue length > 1 do
remove smallest 2; call them x, y
make new node z from them, with f(z) = f(x) + f(y)
insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal: Minimize

Correctness: ???

Cost(T) = freq(c)*depth(c)
c∈C∑ T = Tree

C = alphabet
(leaves)

12

Correctness Strategy

Optimal solution may not be unique, so cannot
prove that greedy gives the only possible answer.

Instead, show greedy’s solution is as good as any.

How: an “exchange argument”
Identify inversions: node-pairs whose swap improves tree

To compare trees T (arbitrary) to H (Huffman): run Huff
alg, tracking subtrees in common to T & H; discrepancies
flag inversions; swapping them incrementally xforms T to H

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent
letter the shorter code.

before after

I.e., non-negative cost savings.

Defn: A pair of leaves x,y is an inversion if

depth(x) ³ depth(y)

and

freq(x) ³ freq(y)

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =

(d(x) - d(y)) * (f(x) - f(y)) ³ 0

x

y

13

General Inversions

Define the frequency of an internal node to be the
sum of the frequencies of the leaves in that
subtree (as shown in the example trees above).

Given that, the definition of inversion on slide 13
easily generalizes to an arbitrary pair of nodes,
and the associated claim still holds: exchanging an
inverted pair of nodes (& associated subtrees)
cannot raise the cost of a tree.

Proof: Exercise (or homework, maybe?)

14

contribution to the

is the sum

as

(FYI: The following slide is heavily animated, which doesn’t
show too well in print. The point is to illustrate the Lemma
on slide 17. Idea is to run Huffman alg on the example above
and compare successive subtrees it builds to subtrees in an
arbitrary tree T. While they agree (marked by yellow),
repeat; when they first differ (in this case, when Huffman
builds node 30), identify an inversion in T whose removal
would allow them to agree for at least one more step, i.e., T’
is more like H than T, but costs no more. Slide 16 is an
example; slide 17 sketches the proof in general.)

15

c:12

25

14 41

e:9 d:16

55
100

a:45

f:5

b:13

(b)

a:45d:16c:12 b:13

f:5

14

e:9(a)

a:45d:16c:12 b:13f:5 e:9

(d)

a:4530

f:5

c:12

25

b:13 d:1614

e:9(c)

a:45d:16

c:12

25

b:13f:5

14

e:9

16

H:

T:

f:5

14

25 30

b:13 d:16

55
100

a:45

c:12

e:9

T’:

In short, where T first differs from H flags an inversion in T

animation,

Pf Idea: Run Huffman alg; “color” T’s nodes to track matching subtrees
between T, H. Inductively: yellow nodes in T match subtrees of H in
Huffman’s heap at that stage in the alg. & yellow nodes partition leaves.
Initially: leaves yellow, rest white.
At each step, Huffman extracts A, B, the 2 min heap items; both yellow in T.
Case 1: A, B match siblings in T. Then their newly created parent node in H
corresponds to their parent in T; paint it yellow, A & B revert to white.

Case 2: A, B not sibs in T. WLOG, in T, depth(A) ³ depth(B) & A is C’s sib.
Note B can’t overlap C (B = C ⇒ case 1; B subtree of C contradicts depth; B contains C

contradicts partition). In T, the freq of C’s root ³
freqs of all yellow nodes in it (≠ ∅ since …).
Huff’s picks (A & B) were min, so freq(C) ³
freq(B). ∴ B:C is an inversion–B is no
deeper/no more frequent than C.
Swapping gives T’ more like H;
repeating ≤ n times converts T to H.

Lemma: Any prefix code tree T can be converted to a
Huffman tree H via inversion-exchanges

17

T T’

A A

B
C B

C

Theorem: Huffman is optimal

Pf: Apply the above lemma to any optimal
tree T=T1. The lemma only exchanges
inversions, which never increase cost, so,
cost of successive trees is monotonically
non-increasing, and the last tree is H:
cost(T1) ³ cost(T2) ³ cost(T3) ³ … ³ cost(H).

Corr: can convert any tree to H by inversion-
exchanges (general exchanges, not just leaf exchanges) 18

19

Data Compression

Huffman is optimal.
BUT still might do better!

Huffman encodes fixed length blocks. What if we vary
them?
Huffman uses one encoding throughout a file. What if
characteristics change?
What if data has structure? E.g. raster images, video,…

Huffman is lossless. Necessary?

LZW, MPEG, …

20

David A. Huffman, 1925-1999

21

22

