
1

CSE 417

Chapter 4: Greedy Algorithms

Many Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

1

Greed is good. Greed is
right. Greed works. Greed
clarifies, cuts through, and
captures the essence of the
evolutionary spirit.

- Gordon Gecko (Michael
Douglas)

2

Intro: Coin Changing

3

4

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢

Cashier's algorithm. At each step, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89

5

Coin-Changing: Does Greedy Always Work?

Observation. Greedy is sub-optimal for US postal
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
■ Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
■ Optimal: 70, 70.

Outline & Goals

“Greedy Algorithms”
what they are

Pros
intuitive
often simple
often fast

Cons
often incorrect!

Proofs are crucial. 3 (of many) techniques:
stay ahead
structural
exchange arguments

6

4.1 Interval Scheduling

Proof Technique 1: “greedy stays ahead”

7

8

Interval Scheduling

Interval scheduling.
■ Job j starts at sj and finishes at fj.
■ Two jobs compatible if they don’t overlap.
■ Goal: find max size subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

9

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take next
job provided it's compatible with the ones already taken.

■ What order?
■ Does that give best answer?
■ Why or why not?
■ Does it help to be greedy about order?

10

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job
provided it's compatible with the ones already taken.

[Earliest start time] Order jobs by ascending start time sj

[Earliest finish time] Order jobs by ascending finish time fj

[Shortest interval] Order jobs by ascending interval length fj - sj

[Longest Interval] Reverse of the above

[Fewest conflicts] For each job j, let cj be the count the
number of jobs in conflict with j. Order jobs by ascending cj

Can You Find Counterexamples?

E.g., Longest Interval:

Others?:

11

12

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each
job provided it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

13

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job provided it’s compatible with the ones
already taken.

Implementation. O(n log n).
■ Remember job j* that was added last to A.
■ Job j is compatible with A if sj ³ fj*.

Sort jobs by finish times so that
f1 £ f2 £ ... £ fn.

A ¬ f
for j = 1 to n {

if (job j compatible with A)
A ¬ A È {j}

}
return A

jobs selected

Interval Scheduling: Earliest Finish First Greedy Algorithm

14

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

16

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

17

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

18

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

19

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

20

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

21

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

22

23

Interval Scheduling: Correctness

Theorem. Earliest Finish First Greedy algorithm is optimal.

Pf. (“greedy stays ahead”)
Let g1, ... gk be greedy’s job picks, j1, ... jm those in some optimal solution
Show f(gr) £ f(jr) by induction on r.

Basis: g1 chosen to have min finish time, so f(g1) £ f(j1)
Ind: f(gr) £ f(jr) £ s(jr+1), so jr+1 is among the candidates considered by
greedy when it picked gr+1, & it picks min finish, so f(gr+1) £ f(jr+1)

Similarly, k ³ m, else jk+1 is among (nonempty) set of candidates for gk+1

j1 j2 jr

g1 g2 gr gr+1

. . .

Greedy:

“OPT”: jr+1

job jr+1 starts after gr ends,
so included in min(…)

4.1 Interval Partitioning

Proof Technique 2: “Structural”

24

25

Interval Partitioning

Interval partitioning.
■ Lecture j starts at sj and finishes at fj.
■ Goal: find minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the
same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

26

Vertices = classes;
Edges = conflicting class pairs;
Different colors = different assigned rooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

C

B

A

E

D G

F

J

H

I

Interval Partitioning as Interval Graph Coloring

Note: graph coloring is very
hard in general, but graphs
corresponding to interval
intersections are a much

simpler special case.

Room 1

Room 2

Room 3

Room 4

27

Interval Partitioning

Interval partitioning.
■ Lecture j starts at sj and finishes at fj.
■ Goal: find minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the
same room.

Ex: Same classes, but this schedule uses only 3 rooms.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

c

a e

f

g i

j

3 3:30 4 4:30

d

b

H

28

Interval Partitioning: A “Structural” Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed ³ depth.

Ex: Depth of schedule below = 3 Þ schedule is optimal.

Q. Does a schedule equal to depth of intervals always exist?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

e.g., a, b, c all contain 9:30

no collisions at ends

29

Interval Partitioning: Earliest Start First Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Implementation. O(n log n).

■ For each classroom k, maintain the finish time of the last job added.
■ Keep the classrooms in a priority queue.

Sort intervals by start time so s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
if (lect j is compatible with some room k, 1£k£d)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¬ d + 1

}

number of allocated classrooms

Implementation? Run-time?
Exercises

30

Interval Partitioning: Greedy Analysis

Observation. Earliest Start First Greedy algorithm never
schedules two incompatible lectures in the same classroom.

Theorem. Earliest Start First Greedy algorithm is optimal.
Pf (exploit structural property).
■ Let d = number of rooms the greedy algorithm allocates.
■ Classroom d opened when we needed to schedule a job,

say j, incompatible with all d-1 previously used classrooms.
■ We sorted by start time, so all incompatibilities

are with lectures starting no later than sj.
■ So, d lectures overlap at time sj + e, i.e.

depth ³ d
■ “Key observation” on earlier slide Þ all

schedules use ³ depth rooms, so d = depth
and greedy is optimal

sj

sj+ε
d
⋮
2
1

4.2 Scheduling to Minimize Lateness

Proof Technique 3: “Exchange” Arguments

31

32

Scheduling to Minimize Lateness

Minimizing lateness problem.
■ Single resource processes one job at a time.
■ Job j requires tj units of processing time & is due at time dj.
■ If j starts at time sj, it finishes at time fj = sj + tj.
■ Lateness: !j = max { 0, fj - dj }.
■ Goal: schedule all to minimize max lateness L = max !j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

j

33

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest job first]
Consider jobs in ascending order of processing time tj.

[Earliest deadline first]
Consider jobs in ascending order of deadline dj.

[Smallest slack first]
Consider jobs in ascending order of slack dj - tj.

34

Greedy template. Consider jobs in some order.

[Shortest job first] Consider in ascending order of
processing time tj.

[Smallest slack] Consider in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

Greedy algorithm. Earliest deadline first.

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1(also true if jobs 3 & 4 flipped)

Sort n jobs by deadline so that d1 £ d2 £ … £ dn

t ¬ 0
for j = 1 to n

// Assign job j to interval [t, t + tj]:
sj ¬ t, fj ¬ t + tj
t ¬ t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

Proof Strategy

A schedule is an ordered list of jobs

Suppose S1 is any schedule & let G be the/a the greedy algorithm’s
schedule

To show: Lateness(S1) ≥ Lateness(G)

Idea: find simple changes that successively transform S1 into other
schedules increasingly like G, each better (or at least no worse)
than the last, until we reach G. I.e.

Lateness(S1) ≥ Lateness(S2) ≥ Lateness(S3) ≥ … ≥ Lateness(G)

If it works for any S1, it will work for an optimal S1, so G is optimal

HOW?: exchange pairs of jobs

36

Minimizing Lateness: No Idle Time

Notes:

1. There is an optimal schedule with no idle time.

2. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

37

38

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j s.t.:
deadline i < deadline j but j scheduled before i.

• Greedy schedule has no inversions.
• Claim: If a schedule has an inversion, it has an adjacent inversion, i.e., a

pair of inverted jobs scheduled consecutively.
(Pf: If j & i aren’t consecutive, then look at the job k scheduled right
after j. If dk < dj, then (j,k) is a consecutive inversion; if not, then (k,i)
is an inversion, & nearer to each other - repeat.)

inversion

ykb za ij
later deadline earlier deadline

de
ad

lin
e

time

39

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j s.t.:
deadline i < deadline j but j scheduled before i.

• Claim: Swapping an adjacent inversion reduces tot # invs by 1 (exactly)

Pf: Let i,j be an adjacent inversion. For any pair (p,q), inversion status
of (p,q) is unchanged by i↔j swap unless {p, q} = {i, j}, and the i,j
inversion is removed by that swap.

inversion

ykb za ij
later deadline earlier deadline

de
ad

lin
e

time

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (di ≤ d j)
= i (definition)

40

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j s.t.:
deadline i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs does not
increase the max lateness.

Pf. Let ! / !' be the lateness before / after swap, resp.
■ !'k = !k for all k ¹ i, j
■ !'i £ !i
■ If job j is now late:

ij

i j

before swap

after swap

f'j

fiinversion
(j had later
deadline, so
is less tardy
than i was)

only j moves
later, but it’s
no later than i
was, so max
not increased

41

Minimizing Lateness: No Inversions

Claim. All idle-free, inversion-free schedules S have the same
max lateness.

Pf. If S has no inversions, then deadlines of scheduled jobs are
monotonically nondecreasing (i.e., increase or stay the same)
as we walk through the schedule from left to right. Two such
schedules can differ only in the order of jobs with the same
deadlines. Within a group of jobs with the same deadline, the
max lateness is the lateness of the last job in the group -
order within the group doesn’t matter.

B CA

deadline 5 deadline 10 deadline 18

B C A

t=10 lateness

42

Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule G is optimal

Pf. Let S* be an optimal schedule with the fewest number of
inversions among all optimal schedules

Can assume S* has no idle time.
If S* has an inversion, let i-j be an adjacent inversion
Swapping i and j does not increase the maximum lateness
and strictly decreases the number of inversions

This contradicts definition of S*
So, S* has no inversions. Hence Lateness(G) =
Lateness(S*)

Minimizing Lateness

New (simpler?) proof.

The 7 slides above summarize the correctness proof for the “earliest
deadline first” greedy algorithm for “minimizing lateness” as presented
in our text and in my lecture on 1/25/19.

The 6 slides below outline an alternative proof that I think is a little
simpler. It uses the same core “exchange argument” idea, while avoiding
the correct but slightly tangential discussion of multiple jobs with the
same deadline. It also feels a little more algorithm-oriented in that it
shows how to turn an arbitrary schedule into exactly the greedy
schedule.

Students are not required to study this, but may find it useful.

43

Minimizing Lateness: No Idle Time

Claim 1: There is an optimal schedule with no idle time.

S

S’

No job ends later in S’ than S, so max lateness in not
increased

Henceforth, assume all schedules are idle-free

44

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Proof Strategy

A schedule is an ordered list of jobs. (No idle; only order matters)

Suppose S1 is any schedule & let G be the the greedy algorithm’s
schedule

To show: Lateness(S1) ≥ Lateness(G)

Idea: find simple changes that successively transform S1 into other
schedules increasingly like G, each better (or at least no worse)
than the last, until we reach G. I.e.

Lateness(S1) ≥ Lateness(S2) ≥ Lateness(S3) ≥ … ≥ Lateness(G)

If it works for any S1, it will work for an optimal S1, so G is optimal

HOW?: exchange pairs of jobs

45

46

Minimizing Lateness: Inversions

(Re-)number the jobs in the order that Greedy schedules
them. Then a “Schedule” is just permutation of 1..n. E.g.:

G: 1 2 3 4 5 S: 4 5 1 2 3
Def. An inversion in schedule S is a pair of jobs i and j s.t.
greedy did i before j (i.e., i < j), but S does j before i.

E.g., (4,2) in S above; also (4,1), (5,3), …

Claim 2: If schedule S has an inversion, it has an adjacent
inversion, i.e., a pair of inverted jobs scheduled consecutively.
Ex: (4,2) are not adjacent, but (5,1) is an adjacent inversion
Pf: An adjacent pair x,y in S is an adjacent inversion if y is smaller than x.
The sublist of S from j to i must have such an adjacent pair since i is
smaller than j. “A walk from high to low must have a 1st step down.”
Ex: 4 5 1 2

47

Minimizing Lateness: Inversions

Claim 3: Swapping an adjacent inversion reduces the total
number of inversions by 1 (exactly)

Pf: To be clear about the defn, since S is just a list of the
numbers between 1 and n, in some order, for any p≠q in 1..n,
p,q is an inversion ⇔ the larger precedes the smaller in list S.
Let i, j be an adjacent inversion. Inversion status of any pair
p,q is unchanged by i↔j swap unless {p,q} = {i,j}, and the i,j
inversion is removed by that swap. In more detail, if neither p nor
q is either i or j, then neither p nor q moves, so status is unchanged. If
one of p,q is i or j, say, p≠i, and q=j, then since j is moved only one position
in the list (i & j are adjacent), it can’t move to the other side of p, and
again status is unchanged.

48

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j s.t.
greedy did i before j (i.e., i < j), but S does j before i.

Claim 4. Swapping two adjacent, inverted jobs does not
increase the max lateness.

Pf. Let ! / !' be the lateness before / after swap, resp.
■ !'k = !k for all k ¹ i, j
■ !'i £ !i
■ If job j is now late:

ij

i j

before swap

after swap

f 'j

fiinversion

(j had later or equal
deadline, so is not
tardier after swap than
i was before swap)

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (di ≤ d j)
= i (definition)

only j moves
later, but it’s
no later than i
was, so max
not increased

49

Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule G is optimal

Pf. Let S1 be an optimal schedule. If S1 has idle time, by claim 1, we can
remove it to form S2 without increasing lateness. If S2 has any inversions,
by claim 2 it has an adjacent inversion, and by claims 3 & 4, we can swap
to form S3 which has fewer inversions and no greater maximum lateness.
Repeating this produces an idle-free, inversion-free schedule, which is
exactly the greedy schedule G, without ever having increased lateness.
Hence Lateness(G) ≤ Lateness(S1), and so is optimal.

A slightly tidier way to say this:

Among all optimal schedules, let S* be one with the fewest inver-
sions, and, by claim 1, no idle time. If S* has inversions, it has adja-
cent inversions (claim 2); swapping one decreases the number of
inversions (claim 3) without increasing maximum lateness (claim 4),
contradicting choice of S*. So, S* has no inversions nor idle time.
But that’s exactly schedule G, hence G is optimal.

Optional Exercise

Here’s an outline for a third proof, that is, in my opinion, even simpler. You might
enjoy fleshing this out as an exercise.

Defn: two vectors (u1, u2, … un) and (v1, v2, …, vn) are lexicographically ordered
u ≺ v if for some i, u1=v1, u2=v2, …, ui-1=vi-1, and ui < vi

I.e., they are identical in their first i-1 positions, and u is smaller in the ith , the first
position where they differ.

Ex: the 6 permutations of 1,2,3 in lex order:123 ≺ 132 ≺ 213 ≺ 231 ≺ 312 ≺ 321

Proof Outline: Let S* be the lexicographically first idle-free optimal schedule.
Argue by contradiction that S* = G, since otherwise, letting i be the 1st position

where they differ, S* looks like (1, 2, 3, …, i-2, i-1, x, y, …, z, i, …) where x≠i.
But z must be larger than i (why?), so z,i is an adjacent inversion; flipping it gives a

lexicographically smaller sequence of no larger max lateness, contradicting choice
of S*. (This uses claims 1 & 4 above; claims 2 & 3 are no longer needed.)

50

51

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of
the greedy algorithm, its solution is at least as “good” as any
other algorithm's. (Part of the cleverness is deciding what’s
“good.”)

Structural. Discover a simple "structural" bound asserting that
every possible solution must have a certain value. Then show
that your algorithm always achieves this bound. (Cleverness
here is usually in finding a useful structural characteristic.)

Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its quality.
(Cleverness usually in choosing which pair to swap.)

(In all 3 cases, proving these claims may require cleverness, too.)

4.4 Shortest Paths in a Graph

You’ve seen this in prerequisite courses, so this
section and next two on min spanning tree are
review. I won’t lecture on them, but you should
review the material. Both, but especially shortest
paths, are common problems, having many
applications. (And, hint, hint, very frequent fodder for
job interview questions…)

52

53

Shortest Path Problem

Shortest path network.
■ Directed graph G = (V, E).
■ Source s, destination t.

■ Length !e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4

5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

cost of path = sum of edge costs in path

54

Dijkstra's Algorithm

Dijkstra's algorithm.
■ Maintain a set of explored nodes S for which we have determined the shortest

path distance d(u) from s to u.

■ Initialize S = { s }, d(s) = 0.
■ Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u

d(u)

S

!e

shortest path to some u in explored part,
followed by a single edge (u, v)

55

Dijkstra's Algorithm

Dijkstra's algorithm.
■ Maintain a set of explored nodes S for which we have determined the shortest

path distance d(u) from s to u.

■ Initialize S = { s }, d(s) = 0.
■ Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u

d(u)

shortest path to some u in explored part,
followed by a single edge (u, v)

S

!e

Summary

“Greedy” algorithms are natural, often intuitive, tend to be simple and efficient
But seductive – often incorrect!

E.g., “Change making,” depending on the available denominations

So, we look at a few examples, each useful in its own right, but emphasize
correctness, and various approaches to reasoning about these algorithms

Interval Scheduling – greedy stays ahead

Interval Partitioning – greedy matches structural lower bound
Minimizing Lateness – exchange arguments

Next: Huffman codes and another exchange argument

Also: This is a good time to review shortest paths and min spanning trees

56

