
1

The Legacy of Alan Turing

Based on slides by team of CMU’s 15-251
Sanjeev Arora and Bernard Chazelle

The HELLO assignment
Write a JAVA program to output the words
“Hello World!” on the screen and halt.

Space and time are not an issue.

PASS for any working HELLO program, no
partial credit.

Grading Program?

How exactly might such a program work?

A grading program G must be able to take any
Java program P and grade it.

G(P)=

Pass, if P prints only the words
“Hello World!” and halts.

Fail, otherwise.

What kind of program
could a student who

hated his/her TA
hand in?

Nasty Program
n:=0;
while (n is not a counter-example

 to the Riemann Hypothesis) {
 n++;

}
print “Hello World!”;

The Riemann Hypothesis

•  Considered by many mathematicians to be the most
important unresolved problem in pure mathematics

•  Conjecture about the distribution of zeros of the
Riemann zeta - function

•  1 Million dollar prize offered by Clay Institute

2

Nasty Program
n:=0;
while (n is not a counter-example

 to the Riemann Hypothesis) {
 n++;

}
print “Hello World!”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is false.

A TA nightmare: Despite
the simplicity of the HELLO

assignment, there is no
program to correctly grade

it!

 We will develop the ideas
needed to prove this.

The theory of what can
and can’t be

computed by an ideal
computer is called

Computability Theory

Turing develops a model of computation

•  Wanted a model of human calculation.
•  Wanted to strip away inessential details.

•  What are the important features?

–  Paper (size? shape?)
–  The ability to read or write what’s on the paper.
–  The ability to shift attention to a different part of

the paper
–  The ability to have what you do next depend on what

part of the paper you are looking at and on what your
state of mind is

–  Limited number of possible states of mind.

A variant on Turing’s model:
Turing-Post programs

•  1 dimensional unlimited scratchpad
(“infinite”)

•  Only symbols are 0/1 (tape
 has a finite number of 1s)

•  Can only scan/write one
symbol per step

•  Legal instructions

PRINT 0
PRINT 1
GO RIGHT
GO LEFT
GO TO STEP i if 1 SCANNED
GO TO STEP i if 0 SCANNED
STOP

What does this program do?

1. PRINT 0
2. GO LEFT
3. GO TO STEP 2 IF 1 SCANNED
4. PRINT 1
5. GO RIGHT
6. GO TO STEP 5 IF 1 SCANNED
7. PRINT 1
8. GO RIGHT
9. GO TO STEP 1 IF 1 SCANNED
10. STOP

3

Example: What does this
program do?

1. PRINT 0
2. GO RIGHT
3. GO TO STEP 1 if 1 SCANNED
4. GO TO STEP 2 if 0 SCANNED

T-P “programming language” has
these instructions

1. PRINT 0
2. PRINT 1
3. GO RIGHT
4. GO LEFT
5. GO TO STEP i if 1 SCANNED
6. GO TO STEP i if 0 SCANNED
7. STOP

What kind of computations can be performed in this model?

Amazing fact about this mickey-
mouse model:

It is equivalent to Java!!
In fact, all of the following are equivalent computational

models:
–  Turing-Post programs
–  Turing machines (which we haven’t defined precisely)
–  Pseudocode (which we haven’t defined precisely
–  Python
–  C++

•  Equivalent = If something can be computed in one of
these models, it can also be computed in the others.

•  = what can be computed on a digital computer (with
no bound on memory)

CHURCH-TURING THESIS
This model captures the notion of computation.

Anything “computable” is computable by Turing

machine.

Any “reasonable, physically realizable” model of
computation can be simulated on a Turing machine

“efficiently”.

Any well-defined procedure that can be grasped and
performed by the human mind and pencil/paper, can be

performed on a conventional digital computer with no bound on
memory.

Turing’s next great insight: duality
between programs and data

•  A program can be viewed either as
–  a program whose execution does whatever that

program is designed to do -- P
–  or as plain data --the code of the program --

code(P).

“Code” for a program

Many conventions possible (e.g., ASCII)
One possible convention:

 P Code (P)

= Binary Representation

Start with 1, end with 111

4

P vs code (P)

P:
1. PRINT 0
2. GO RIGHT
3. GO TO STEP 1 if 1 SCANNED
4. GO TO STEP 2 if 0 SCANNED

Code(P)?

Start with 1, end with 111

Turing’s next great insight: duality
between programs and data

•  A program can be viewed either as
–  a program whose execution does whatever that

program is designed to do -- P
–  or as plain data --the code of the program --

code(P).

•  If code(P) can be viewed as data, it can be
the input to another program!

Duality leads to Universality!

•  There is a universal Turing machine U
–  On input code(P) and an input x, U outputs the same thing as P

does on input x
–  At each step it decodes which operation P would have performed

and simulates it.
•  One Turing machine, the Universal TM, is enough!

–  Basis for modern stored-program computer
•  Von Neumann studied Turing’s UTM design

P

input
x

output
P(x) U

x output
P(x) Code(P)

You be the universal computer

101111010001100111111 code(P) followed by input

Start with 1, end with 111

1 011 11010 001 100 111 111

Before Turing…

data

brain

control

data program

brain

5

control

data program

brain

Let ‘em eat cake Print this

Let ‘em eat cake

Fishing … Fishing …

Fishing manual
program data

control

data program

knows
nothing control = hardware

data program

knows
nothing

programs = software

6

Duality leads to Universality!

•  There is a universal Turing machine U
–  On input code(P) and an input x, U outputs the same thing as P

does on input x
–  At each step it decodes which operation P would have performed

and simulates it.
•  One Turing machine, the Universal TM, is enough!

–  Basis for modern stored-program computer
•  Von Neumann studied Turing’s UTM design

•  “existence of software industry lemma” --Scott
Aaronson

P

input
x

output
P(x) U

x output
P(x) Code(P)

The Halting Problem
(or Universal Termination Detector)

Is there a program HALT such that:

HALT(code(P),x) = True, if P(x) halts
HALT(code(P),x) = False, if P(x) does
 not halt

1.  GO RIGHT
2.  GO TO STEP 1 IF 0 IS SCANNED
3.  GO TO STEP 1 IF 1 IS SCANNED
4.  STOP

We’ll use a “proof by contradiction”

“When something’s not right, it’s wrong.”

 Bob Dylan

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(code(P),x) = True, if P(x) halts
HALT(code(P),x) = False, if P(x) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(code(P))
{ if (HALT(code(P),code(P))=True)

 then loop forever; // i.e., we don’t halt
 else exit; // i.e., we halt

}

CONFUSE
CONFUSE(code(P))
{ if (HALT(code(P),code(P))=True)

 then loop forever; // i.e., we dont halt

 else exit; // i.e., we halt

}

Suppose CONFUSE(<CONFUSE>) halts:
then HALT(<CONFUSE>,<CONFUSE>) = TRUE

⇒  CONFUSE will loop forever on input <CONFUSE>

Suppose CONFUSE(<CONFUSE>) does not halt
then HALT(<CONFUSE>,<CONFUSE>) = FALSE

⇒ CONFUSE will halt on input <CONFUSE>

CONTRADICTION

<P>=code(P)

7

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

Similar to the fact that there
are different kinds of infinity

∞
Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

“This is a first, fundamental
impossibility result for computation
-- a natural problem that can’t be

solved computationally. And
starting with this result,

impossibility spreads like a shock
wave through the space of

problems…” Kleinberg/Papadimitriou

• No Hello World Tester

There is no program to grade the HELLO
assignment

GIVEN:

program to
solve

HELLO

Does P halt?

BUILD:

program
to solve
Halting
Problem

Let P’ be P with all print
statements removed.

Is [P’; print HELLO]
a hello program?

“This is a first, fundamental
impossibility result for computation
-- a natural problem that can’t be

solved computationally. And
starting with this result,

impossibility spreads like a shock
wave through the space of

problems…” Kleinberg/Papadimitriou
• No Hello World Tester

• No automated checking of pretty
much any property of software!

