Algorithms, complexity and P vs NP

Can creativity be automated?

Slides by Avi Wigderson + Bernard Chazelle (with some extras)

SURVEY

Finding an efficient method to solve SuDoku puzzles is:

	8	6					

1: A waste of time
2: A decent way to pass some time
3: A fundamental problem of science and math

Evaluating how good (how efficient) an algorithm is

How does the number of basic steps of an algorithm increase with the data size (input length)?

what is in NP?

Mathematician: Given a statement, find a proof Scientist: Given data on some phenomena, find a theory explaining it.
Engineer: Given constraints (size,weight, energy) find a design (bridge, medicine, phone)

In many intellectual challenges, verifying that we found a good solution is an easy task! (if not, we probably wouldn' \dagger start looking)

If $P=N P$, these have fast, automatic finder

Both translators are efficient algorithms!

Both translators are efficient algorithms!

Univensality: Np-completeness

SuDoku solver can solve any NP problem 1971: NP-complete problems exist! SAT is NP-complete: There is a "reduction" from any NP problem to SAT
NP-complete problems abound!

1972: 21 problems in logic, optimization, algebra Today: $\mathbf{\sim} 3000$ problems in all sciences, equivalent

$$
=N P \text { iff SuDoku has an efficient algorithm }
$$

CLIQUE Problem

Social network
Each node represents a student
Two nodes connected by eage if those students are friends
In this social network, is there a clique of k or more people?
CLIQUE: Group of
students, every pair of
students, every pcir
whom are friends
What is a good algorithm
What is a good algorithm
for detecting the biggest
for detecting the biggest
clique?
clique?
How does efficiency depend on network size and desired clique size?

Traveling Salesman Problem (aka UPS Truck problem)

Input: n points and all pairwise inter-point distances, and
a distance k
Decide: is there a path
that visits all the points
("salesman tour") whose
total length is at most k ?

- NP-complete!

