

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!

- Although 6.02 \times 10^{23} \times N^{20} is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on input	
increasing size, for a processor performing a million high-level instructions per	second.
In cases where the running time exceeds 1025 years, we simply record the algo	rithm as
taking a very long time.	

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ year
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very lon;
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very lon
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very lon
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very lon
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very lon

Moore's Law

The prediction that transistor density and hence the speed of computers will double every 18 months or so.

- Based on observation of 1960-- 1965
- Has pretty much held for last 40 years

Does this provide disincentive to develop efficient (polynomial time) algorithms?

Moore's Law

Does Moore's Law provide disincentive to develop efficient (polynomial time) algorithms?

NO!!

Running time of alg Max input size 2x speedup 2⁸x speedup in time T

Moore's Law

Does Moore's Law provide disincentive to develop efficient (polynomial time) algorithms?

NO!!

Exponential algorithms make polynomially slow progress, while polynomial algorithms advance exponentially fast!

Asymptotic Analysis of Algorithms

In a nutshell:

- · Suppresses constant factors (that are system dependent)
- · Suppresses lower order terms (that are irrelevant for large inputs)

Asymptotic Order of Growth

Upper bounds (Big Oh). T(n) is O(f(n)) if there exist constants c > 0and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.

Lower bounds (Big Omega). T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.

Tight bounds (Theta). T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Little oh. T(n) is o(f(n)) if for all constants c > 0 there is $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\le c \cdot f(n)$.

Ex: $T(n) = 32n^2 + 17n + 32$.

- T(n) is O(n²), O(n³), o(n³), $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- T(n) is not O(n), o(n²), Ω(n³), Θ(n), or Θ(n³).

Polynomials. $a_0 + a_1n + ... + a_dn^d$ is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0.

can avoid specifying the base

Logarithms. For every x > 0, log n = $O(n^{x})$.

log grows slower than every polynomial

Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial