
1/5/17

Copyright 2000, Kevin Wayne 1

1

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

2

What do we want from our performance measure?

■  platform independent, implementation-detail independent à ignore
constant factors, use big O notation when we talk about running time.

■  instance independent à worst-case analysis (sometimes average case
analysis)

■  of predictive value with respect to increasing input size, tells us how
algorithm scales à want to measure rate of growth of T(n) as function
of n, the input size.

Asymptotic, worst – case analysis
Seek polynomial time algorithms

3

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.
■  Generally captures efficiency in practice.
■  Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm
on random input as a function of input size N.
■  Hard (or impossible) to accurately model real instances by random

distributions.
■  Algorithm tuned for a certain distribution may perform poorly on

other inputs.

4

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
■  Typically takes 2N time or worse for inputs of size N.
■  Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women

1/5/17

Copyright 2000, Kevin Wayne 2

5

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
■  Although 6.02 × 1023 × N20 is technically poly-time, it would be

useless in practice.
■  In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.
■  Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.
■  Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.
■  Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.

6

Why It Matters

7

Moore’s Law

The prediction that transistor density and hence the speed of
computers will double every 18 months or so.

■  Based on observation of 1960-- 1965
■  Has pretty much held for last 40 years

Does this provide disincentive to develop efficient (polynomial time)
algorithms?

8

Moore’s Law

Does Moore’s Law provide disincentive to develop efficient (polynomial
time) algorithms?

NO!!

Running time of alg Max input size 2x speedup 28x speedup
 in time T

1/5/17

Copyright 2000, Kevin Wayne 3

9

Moore’s Law

Does Moore’s Law provide disincentive to develop efficient (polynomial
time) algorithms?

NO!!

Exponential algorithms make polynomially slow progress, while
polynomial algorithms advance exponentially fast!

10

Asymptotic Analysis of Algorithms

In a nutshell:

•  Suppresses constant factors (that are system dependent)

•  Suppresses lower order terms (that are irrelevant for large inputs)

11

Asymptotic Order of Growth

Upper bounds (Big Oh). T(n) is O(f(n)) if there exist constants c > 0
and n0 ≥ 0 such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds (Big Omega). T(n) is Ω(f(n)) if there exist constants c >
0 and n0 ≥ 0 such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds (Theta). T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Little oh. T(n) is o(f(n)) if for all constants c > 0 there is n0 ≥ 0 such
that for all n ≥ n0 we have T(n) ≤ c · f(n).

Ex: T(n) = 32n2 + 17n + 32.
■  T(n) is O(n2), O(n3), o(n3), Ω(n2), Ω(n), and Θ(n2) .
■  T(n) is not O(n), o(n2), Ω(n3), Θ(n), or Θ(n3).

12

Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + … + adnd is Θ(nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d independent
of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial

