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Computational Tractability 

 
 

Charles Babbage (1864) 

As soon as an Analytic Engine exists, it will necessarily 
guide the future course of the science.  Whenever any 
result is sought by its aid, the question will arise - By what 
course of calculation can these results be arrived at by the 
machine in the shortest time?  - Charles Babbage 

Analytic Engine (schematic) 
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What do we want from our performance measure? 

■  platform independent, implementation-detail independent  à ignore 
constant factors, use big O notation when we talk about running time. 

■  instance independent  à  worst-case analysis (sometimes average case 
analysis) 

■  of predictive value with respect to increasing input size, tells us how 
algorithm scales  à want to measure rate of growth of T(n) as function 
of n, the input size. 

Asymptotic, worst – case analysis 
Seek polynomial time algorithms 
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Worst-Case Analysis 

Worst case running time.  Obtain bound on largest possible running time 
of algorithm on input of a given size N. 
■  Generally captures efficiency in practice. 
■  Draconian view, but hard to find effective alternative.  

Average case running time.  Obtain bound on running time of algorithm 
on random input as a function of input size N. 
■  Hard (or impossible) to accurately model real instances by random 

distributions. 
■  Algorithm tuned for a certain distribution may perform poorly on 

other inputs. 
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Polynomial-Time 

Brute force.  For many non-trivial problems, there is a natural brute 
force search algorithm that checks every possible solution. 
■  Typically takes 2N time or worse for inputs of size N. 
■  Unacceptable in practice. 

 
 
Desirable scaling property.  When the input size doubles, the algorithm 
should only slow down by some constant factor C.  
 
 
 
 
 
Def.  An algorithm is poly-time if the above scaling property holds. 

There exists constants c > 0 and d > 0 such that on every 
input of size N, its running time is bounded by c Nd steps. 

choose C = 2d  

n ! for stable matching 
with n men and n women 
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Worst-Case Polynomial-Time 

Def.  An algorithm is efficient if its running time is polynomial. 
 
Justification:  It really works in practice! 
■  Although 6.02 × 1023 × N20 is technically poly-time, it would be 

useless in practice. 
■  In practice, the poly-time algorithms that people develop almost 

always have low constants and low exponents. 
■  Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem. 

Exceptions. 
■  Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice. 
■  Some exponential-time (or worse) algorithms are widely used 

because the worst-case instances seem to be rare. 
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Why It Matters 
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Moore’s Law 

The prediction that transistor density and hence the speed of 
computers will double every 18 months or so. 
 
■  Based on observation of 1960-- 1965 
■  Has pretty much held for last 40 years 

Does this provide disincentive to develop efficient (polynomial time) 
algorithms? 
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Moore’s Law 

Does Moore’s Law provide disincentive to develop efficient (polynomial 
time) algorithms? 
 
NO!!  
 
Running time of alg       Max input size       2x speedup        28x speedup 
                                        in time T 
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Moore’s Law 

Does Moore’s Law provide disincentive to develop efficient (polynomial 
time) algorithms? 
 
NO!!  
 
Exponential algorithms make polynomially slow progress, while 
polynomial algorithms advance exponentially fast! 
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Asymptotic Analysis of Algorithms 

 
In a nutshell: 
 
•  Suppresses constant factors (that are system dependent) 
 
•  Suppresses lower order terms (that are irrelevant for large inputs) 
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Asymptotic Order of Growth 

Upper bounds (Big Oh).  T(n) is O(f(n)) if there exist constants c > 0 
and n0 ≥ 0 such that for all n ≥ n0 we have T(n) ≤ c · f(n). 
 
Lower bounds (Big Omega).  T(n) is Ω(f(n)) if there exist constants c > 
0 and n0 ≥ 0 such that for all n ≥ n0 we have T(n) ≥ c · f(n). 
 
Tight bounds (Theta).  T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)). 
 
Little oh.  T(n) is o(f(n)) if for all constants c > 0 there is n0 ≥ 0 such 
that for all n ≥ n0 we have T(n) ≤ c · f(n). 
 
Ex:   T(n) = 32n2 + 17n + 32. 
■  T(n) is O(n2), O(n3), o(n3), Ω(n2), Ω(n), and Θ(n2) . 
■  T(n) is not O(n), o(n2), Ω(n3), Θ(n), or Θ(n3). 
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Asymptotic Bounds for Some Common Functions 

Polynomials.  a0 + a1n + … + adnd  is Θ(nd) if ad > 0.  
 
Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n. 
 
 
Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0. 
 
 
Logarithms.  For every x > 0,  log n = O(nx). 
 
 
 
Exponentials.  For every r > 1 and every d > 0,  nd = O(rn). 

every exponential grows faster than every polynomial 

can avoid specifying the base 

log grows slower than every polynomial 


