
DFS(v) – Recursive version
Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered" �
dfscounter = 0
for v = 1 to n do�

if state(v) != fully-explored then
DFS(v):

DFS(v)
v.dfs# = dfscounter++ // v "discovered", number it
Mark v ``discovered”.
for each edge (v,x)

if (x.dfs# == -1) // (x previously undiscovered)
DFS(x)

else …
Mark v “fully-explored”

134

Kinds of edges – DFS on
directed graphsEdge (u,v)

Tree

 [u [v v] u]

Forward

 [u [v v] u]

Cross
 [v v] [u u]

Back

 [v [u u] v]

Here [u means DFS(u) starts

 u] means DFS(u) completes

Topological Sort using DFS
Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered" �
dfscounter = 0
current_label = n
for v = 1 to n do�

if state(v) != fully-explored then
DFS(v):

DFS(v)
v.dfs# = dfscounter++ // v "discovered", number it
Mark v ``discovered”.
for each edge (v,x)

if (x.dfs# == -1) // (x previously undiscovered)

DFS(x)
 else // add check for cycle if needed
Mark v “fully-explored”
f(v) = current_label // f(v) values give the topological order
current_label --;

Analysis
Running time O(n+m)

Correctness: Need to show that:
 if (u,v) is an edge then f(u) < f(v)
Case 1: DFS(u) called before DFS(v), so DFS(v)

finishes first, which means f(v) > f(u).

Case 2: DFS(v) called before DFS(u). But there
cannot be a directed path from v to u, so
recursive call to DFS(v) will finish before
recursive call to DFS(u) starts, so f(v) > f(u) 136

137

€

M(v) =
L(v) if v is a leaf
min(L(v), minw a child of v M(w)) otherwise
"

$

%
&
'

A simple problem on trees

Given: tree T, a value L(v) defined for every
vertex v in T�
Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself). �
How? Depth first search, using:

138

DFS(v) – Recursive version

Global Initialization:
for all nodes v, v.dfs# = -1 // mark v "undiscovered" �
dfscounter = 0 // (global variable)
DFS(s); // start DFS at node s;

DFS(v)
v.dfs# = dfscounter++ // v "discovered", number it
for each edge (v,x)

if (x.dfs# = -1) // tree edge (x previously undiscovered)

DFS(x)

139

Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph

articulation points represent vulnerabilities in
a network – single points whose failure would
split the network into 2 or more
disconnected components

140
Ram Samudrala/Jason McDermott Articulation point proteins

Identifying key proteins on the anthrax predicted network

141

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

articulation point  
iff its removal  

disconnects 
the graph

142

Articulation Points
1

2 10

9

8

3

7

6
4

5

11
12

13

143

Simple Case: Artic. Pts in a tree

Which nodes in a rooted tree are articulation
points?

144

Simple Case: Artic. Pts in a tree

Leaves – never articulation points
Internal nodes – always articulation points
Root – articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)

Recall: all edges either tree edges or back
edges in DFS on undirected graph

Consider edge (u,v).
If u discovered first, then edge (u,v) will be

explored before DFS(u) completes.
If at the time it is explored v is undiscovered, the

edge will become a tree edge.

If v is already discovered, then since DFS(v) was
called after DFS(u), it completes before DFS(u)
completes,

So v is a descendent of u. 145

Recall: all edges either tree edges or back
edges in DFS on undirected graph

If u is an ancestor of v, then
 dfs# of u is lower than dfs# of v

146

147

Simple Case: Artic. Pts in a tree

Leaves – never articulation points
Internal nodes – always articulation points
Root – articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)

148

Articulation Points from DFS

Root node is an articulation point �
iff ….

Leaf is never an articulation point
 non-leaf, non-root
node u is an
articulation point⇔

u
xy

149

Articulation Points from DFS

Root node is an articulation point �
iff it has more than one child

Leaf is never an articulation point

∃ some child y of u s.t.
no non-tree edge goes
above u from y or below

non-leaf, non-root
node u is an
articulation point⇔

u
x

If removal of u does NOT
separate x, there must be an
exit from x's subtree. How?
Via back edge.

y

150

Articulation Points: �
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any �
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in that
subtree by a back edge.

151

A
B

H G

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
9 5

8 4

3

2 Vertex DFS # Low
A 1
B 2
C 3
D 4
E 8
F 5
G 9
H 10
I 6
J 11
K 7
L 12
M 13

LOW(v) is the lowest dfs# of any vertex that is either in
the dfs subtree rooted at v (including v itself) or connected

to a vertex in that subtree by a back edge.

152

Articulation Points
A

B

H G

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
9 5

8 4

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

153

Articulation Points
A

B

H G

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
9 5

8 4

3

2 Vertex DFS # Low
A 1 1
B 2 1
C 3 1
D 4 3
E 8 1
F 5 3
G 9 9
H 10 1
I 6 3
J 11 10
K 7 3
L 12 10
M 13 13

154

Articulation Points: �
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any �
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in that
subtree by a back edge.

v articulation point iff…

155

Articulation Points: �
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any �
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in that
subtree by a back edge.

v (non-root) articulation point iff some
child x of v has LOW(x) ≥ dfs#(v)

156

Articulation Points: �
the "LOW" function

Definition: LOW(v) is the lowest dfs# of any �
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in that
subtree by a back edge.

v (nonroot) articulation point iff some child x of v
has LOW(x)) ≥ dfs#(v)

LOW(v) =�
 min ({dfs#(v)} ∪ {LOW(w) | w a child of v } ∪ �
 { dfs#(x) | {v,x} is a back edge from v })

157

DFS(v) for�
Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# // initialization
for each edge {v,x}

if (x.dfs# == -1) // x is undiscovered
DFS(x)
v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print "v is art. pt., separating x"
else if (x is not v's parent)

v.low = min(v.low, x.dfs#)

Equiv: "if({v,x}
is a back edge)" 
Why?

Except for root. W
hy?

Summary

Graphs –abstract relationships among pairs of objects
Terminology – node/vertex/vertices, edges, paths, multi-

edges, self-loops, connected

Representation – edge list, adjacency matrix
Nodes vs Edges – m = O(n2), often less

BFS – Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS – recursion/stack; all edges ancestor/descendant

Algorithms – connected components, bipartiteness,
topological sort, articulation points

158

