3.4 Testing Bipartiteness

Bipartite Graphs

Def. An undirected graph $G=(V, E)$ is "bi-partite" means bipartite (2-colorable) if the nodes can be colored red or blue such that no edge has both ends the same color.

Applications.
Stable marriage: men $=$ red, women $=$ blue Scheduling: machines $=$ red, jobs $=$ blue
 "two parts." An equivalent definition: G is bipartite if you can partition the node set into 2 parts (say, blue/red or left/ right) so that all edges join nodes in different parts/no edge has both ends in the same part.

Testing Bipartiteness

Testing bipartiteness. Given a graph G , is it bipartite?
Many graph problems become:
easier if the underlying graph is bipartite (matching) tractable if the underlying graph is bipartite (independent set) Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.

bipartite (2-colorable)

not bipartite (not 2-colorable)

not bipartite
(not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer. By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
red = nodes on odd levels, blue $=$ nodes on even levels.

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_{0}, \ldots, L_{k} be the layers produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge $\& x, y$ in same level $L j$. Let $\mathrm{z}=$ their lowest common ancestor in BFS tree. Let Li be level containing z . Consider cycle that takes edge from x to y, then tree from y to z, then tree from z to x. Its length is $\underbrace{1}+\underbrace{(j-i)}+\underbrace{(j-i)}$, which is odd.

(x, y) path from path from y to $z \quad z$ to x

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length cycle.

NB: the proof is algorithmic-it finds a coloring or odd cycle.

not bipartite (not 2-colorable)

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s"discovered"
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered) mark x discovered append x on queue

Exercise: modify code to determine if the graph is bipartite mark u fully explored
3.6 DAGs and Topological Ordering

Precedence Constraints

Precedence constraints. Edge $\left(v_{i}, v_{j}\right)$ means task v_{i} must occur before v_{j}.

Applications
Course prerequisites: course v_{i} must be taken before v_{i}
Compilation: must compile module v_{i} before v_{j}
Computing workflow: output of job v_{i} is input to $j o b v_{j}$
Manufacturing or assembly: sand it before you paint it...
Spreadsheet evaluation order: if $A 7$ is "=A6+A5+A4", evaluate them first

Directed Acyclic Graphs

Def. A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Ex. Precedence constraints: edge $\left(v_{i}, v_{j}\right)$ means v_{i} must precede v_{j}.

Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $\mathrm{i}<\mathrm{j}$.

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

if all edges go $L \rightarrow R$, you can't loop back to close a cycle

Suppose that G has a topological order v_{1}, \ldots, v_{n} and that G also has a directed cycle C .
Let v_{i} be the lowest-indexed node in C, and let v_{j} be the node just before v_{i}; thus $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$ is an edge.
By our choice of i, we have $i<j$.
On the other hand, since $\left(v_{j}, v_{i}\right)$ is an edge and v_{1}, \ldots, v_{n} is a topological order, we must have $\mathrm{j}<\mathrm{i}$, a contradiction.

Directed Acyclic Graphs

Lemma.
If G has a topological order, then G is a $D A G$.
Q. Does every DAG have a topological ordering?
Q. If so, how do we compute one?

Directed Acyclic Graphs

Lemma. If G is a $D A G$, then G has a node with no incoming edges.

Pf. (by contradiction)
Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u. Then, since u has at least one incoming edge (x, u), we can walk backward to x.
Repeat until we visit a node, say w, twice.
 Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf Algorithm?

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
Base case: true if $\mathrm{n}=1$.
Given DAG on $n>I$ nodes, find a node v with no incoming edges.
$G-\{v\}$ is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, $G-\{v\}$ has a topological ordering.
Place v first in topological ordering; then append nodes of $G-\{v\}$ in topological order. This is valid since v has no incoming edges. .

```
To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of G-{v}
    and append this order after v
```


Topological Ordering Algorithm: Example

Topological order:

Topological Ordering Algorithm: Example

Topological order: $v_{\text {I }}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

Topological Ordering Algorithm: Example

Topological order: $v_{1}, v_{2}, v_{3}, v_{4}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}$

Topological Ordering Algorithm: Example

Topological order: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}$.

Topological Sorting Algorithm

Linear time implementation?

Topological Sorting Algorithm

Maintain the following: count $[\mathrm{w}]=$ (remaining) number of incoming edges to node w $S=$ set of (remaining) nodes with no incoming edges
Initialization:

$$
\operatorname{count}[w]=0 \text { for all w }
$$

count[w]++ for all edges (v, w)
$S=S \cup\{w\}$ for all w with count $[w]==0$
Main loop:
while S not empty
remove some v from S
make v next in topo order for all edges from v to some w decrement count[w] add w to S if count[w] hits 0

Correctness: clear, I hope
Time: $\mathrm{O}(\mathrm{m}+\mathrm{n})$ (assuming edge-list representation of graph)

Depth-First Search

Follow the first path you find as far as you can go Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack

DFS(v) - Recursive version

Global Initialization: for all nodes v, v.dfs\# = - I // mark v "undiscovered" dfscounter $=0$
DFS(s);
// (global variable)
// start DFS at node s;
DFS(v)
v.dfs\# = dfscounter++ // v "discovered", number it for each edge (v, x)

$$
\begin{aligned}
& \text { if }(\mathrm{x} . \mathrm{dfs} \#=-I) \quad / / \text { tree edge }(x \text { previously undiscovered) } \\
& \text { DFS }(\mathrm{x})
\end{aligned}
$$

Why fuss about trees (again)?

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ ancestor

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:
undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

DFS(A)

Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

Color code:

undiscovered

discovered
Suppose edge lists at each vertex are sorted alphabetically

DFS(A)

Edge code:

DFS(A)

Tree edge Back edge
--.".".

Edge code:

Properties of (Undirected) DFS(v)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to X (through previously unvisited vertices)
Edges into then-undiscovered vertices define a tree the "depth first spanning tree" of G
Unlike the BFS tree:
the DF spanning tree isn't minimum depth its levels don't reflect min distance from the root non-tree edges never join vertices on the same or adjacent levels
BUT...

Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
(undirected graphs)

No cross edges!

Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"--only descendant/ancestor

DFS(v) - Recursive version

Global Initialization:
for all nodes v, v.dfs\# = - I // mark v "undiscovered" dfscounter $=0$
for $\mathrm{v}=\mathrm{I}$ to n do
if state(v) != fully-explored then
DFS(v):
DFS(v)
v.dfs\# = dfscounter++ // v "discovered", number it Mark v "discovered".
for each edge (v, x)
if $(\mathrm{x} . \mathrm{dfs} \#=-\mathrm{I}) \quad / /(x$ previously undiscovered) DFS(x)
else ...
Mark v"fully-explored"

Kinds of edges - DFS on

Edge (u,v) directed graphs

Tree

$$
\left.\left[\begin{array}{ll}
\mathrm{u} & {[\mathrm{v}} \\
\mathrm{v}
\end{array}\right] \mathrm{u}\right]
$$

Forward

$$
\left[\begin{array}{lll}
u & {[v} & v
\end{array}\right]
$$

Cross

$$
\left[\begin{array}{ll}
\mathrm{v} & \mathrm{v}]\left[\begin{array}{ll}
\mathrm{u} & \mathrm{u}]
\end{array}\right]
\end{array}\right.
$$

Back

$$
\left[\begin{array}{ccc}
\mathrm{v} & {[\mathrm{u}} & \mathrm{u}]
\end{array} \mathrm{v}\right]
$$

