Graphs and Graph Algorithms

Slides by Larry Ruzzo
Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- & Depth-first search
Three Algorithms:
 Connected components
 Bipartiteness
 Topological sort
Graphs

An extremely important formalism for representing (binary) relationships

Objects: "vertices," aka "nodes"

Relationships between pairs: "edges," aka "arcs"

Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Meg Ryan was in "French Kiss" with Kevin Kline

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Kevin Bacon was in "Apollo 13" with Tom Hanks
Objects & Relationships

The Kevin Bacon Game:
 Obj: Actors
 Rel: Two are related if they've been in a movie together

Exam Scheduling:
 Obj: Classes
 Rel: Two are related if they have students in common

Traveling Salesperson Problem:
 Obj: Cities
 Rel: Two are related if can travel *directly* between them
Undirected Graph $G = (V,E)$
Undirected Graph $G = (V, E)$
Undirected Graph $G = (V,E)$
Undirected Graph \(G = (V,E) \)
Undirected Graph \(G = (V,E) \)
Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V, E)$
Directed Graph $G = (V,E)$
Specifying undirected graphs as input

What are the vertices?
Explicitly list them:
{"A", "7", "3", "4"}

What are the edges?
One possibility:
(symmetric) adjacency matrix

\[
\begin{array}{c|cccc}
 & A & 7 & 3 & 4 \\
\hline
A & 0 & 0 & 1 & 1 \\
7 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Specifying directed graphs as input

What are the vertices?
Explicitly list them:
{"A", "7", "3", "4"}

What are the edges?
(Nonsymmetric) adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?
Let G be an undirected graph with n vertices and m edges. How are n and m related?

Since

- every edge connects two different vertices (no loops),
- and no two edges connect the same two vertices (no multi-edges),

it must be true that:

$$0 \leq m \leq \frac{n(n-1)}{2} = O(n^2)$$
More Cool Graph Lingo

A graph is called *sparse* if \(m \ll n^2 \), otherwise it is *dense*

Boundary is somewhat fuzzy; \(O(n) \) edges is certainly sparse, \(\Omega(n^2) \) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse \((m \leq 3n-6, \text{ for } n \geq 3)\)

Q: which is a better run time, \(O(n+m) \) or \(O(n^2) \)?
More Cool Graph Lingo

A graph is called *sparse* if $m \ll n^2$, otherwise it is *dense*

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse ($m \leq 3n-6$, for $n \geq 3$)

Q: which is a better run time, $O(n+m)$ or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but $n+m$ usually way better!
Representing Graph $G = (V,E)$

Vertex set $V = \{v_1, ..., v_n\}$

Adjacency Matrix A

$A[i,j] = 1$ iff $(v_i,v_j) \in E$

Space is n^2 bits

Advantages?

Disadvantages?
Representing Graph $G = (V,E)$

Vertex set $V = \{v_1, \ldots, v_n\}$

Adjacency Matrix A

$A[i,j] = 1$ iff $(v_i, v_j) \in E$

Space is n^2 bits

Advantages:

$O(1)$ test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access

$m \ll n^2$
Representing Graph \(G=(V,E) \)

\(n \) vertices, \(m \) edges

Adjacency List:
\(O(n+m) \) words

Advantages?

Disadvantages?
Representing Graph $G=(V,E)$

n vertices, m edges

Adjacency List:
$O(n+m)$ words

Advantages:
Compact for sparse graphs

Disadvantages
More complex data structure
no $O(1)$ edge test
Representing Graph $G=(V,E)$

n vertices, m edges

Adjacency List:
$O(n+m)$ words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)
Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:

- **Breadth-First Search**: order the nodes in successive layers based on distance from s
- **Depth-First Search**: more natural approach for exploring a maze; many efficient algs build on it.
Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue
Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Three states of vertices
- undiscovered
- discovered
- fully-explored
BFS(s) Implementation

Global initialization: mark all vertices *undiscovered*

BFS(s)

mark s *discovered*

queue = { s }

while queue not empty

\[u = \text{remove}_\text{first}(\text{queue}) \]

for each edge \(\{u, x\} \)

\[\text{if (x is undiscovered)} \]

\[\text{mark } x \text{ discovered} \]

append \(x \) on queue

\[\text{mark } u \text{ fully explored} \]
BFS(v)

Queue: 1
BFS(v)

Queue: 2 3
BFS(v)

Queue: 3 4
BFS(ν)

Queue:
4 5 6 7
BFS(v)

Queue: 5 6 7 8 9
BFS(ν)

Queue: 8 9 10 11
BFS(v)

Queue: 10 11 12 13
BFS(v)

Queue:
BFS: Analysis, 1

\[O(n) \quad \text{Global initialization: mark all vertices "undiscovered"} \]

\[+ \quad \text{BFS}(s) \]

\[O(1) \quad \text{mark } s \ "\text{discovered"} \]

\[+ \quad \text{queue} = \{ s \} \]

\[O(n) \quad \text{while queue not empty} \]

\[\quad x \]

\[O(n) \quad \text{for each edge } \{ u, x \} \]

\[\quad \text{if } (x \text{ is undiscovered}) \]

\[\quad \text{mark } x \text{ discovered} \]

\[\quad \text{append } x \text{ on queue} \]

\[= O(n^2) \quad \text{mark } u \text{ fully explored} \]

Simple analysis:

2 nested loops.
Get worst-case number of iterations of each; multiply.
BFS: Analysis, II

Above analysis correct, but pessimistic (can't have $\Omega(n)$ edges incident to each of $\Omega(n)$ distinct "u" vertices if G is sparse). Alt, more global analysis:

Each edge is explored once from each end-point, so total runtime of inner loop is $O(m)$.

Total $O(n+m)$, $n = \#$ nodes, $m = \#$ edges

Exercise: extend algorithm and analysis to non-connected graphs
Properties of \((\text{Undirected}) \ \text{BFS}(v)\)

\(\text{BFS}(v)\) visits \(x\) if and only if there is a path in \(G\) from \(v\) to \(x\).

Edges into then-undiscovered vertices define a \textit{tree} – the "breadth first spanning tree" of \(G\)
Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G.

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.

All non-tree edges join vertices on the same or adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start all edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start, all edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

- Can label by distances from start.
- All edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start
all edges connect same/adjacent levels
Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has interesting structure…
BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)

mark s "discovered"
queue = { s }
while queue not empty
 u = remove_first(queue)
 for each edge \{u, x\}
 if (x is undiscovered)
 mark x discovered
 append x on queue
mark u fully explored

Exercise: modify code to compute level numbers
Label edges as tree edges or non-tree edges (within/between)
Number of distinct shortest paths
Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Set up one-time data structure to answer such questions efficiently.
Graph Search Application: Connected Components

initial state: all v undiscovered
for $v = 1$ to n do
 if state(v) \neq fully-explored then
 BFS(v)
 endif
endfor

Total cost: $O(n+m)$
each edge is touched a constant number of times (twice)
works also with DFS

Exercise: modify code to answer CC queries
Graph Search Application: Connected Components

Want to answer questions of the form:

- given vertices u and v, is there a path from u to v?

Idea: create array A such that

$A[u] = \text{smallest numbered vertex that is connected to } u$. Question reduces to whether $A[u] = A[v]$?

Q: Why not create 2-d array $\text{Path}[u,v]$?
Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that

\[A[u] = \text{smallest numbered vertex that is connected to } u. \]

Graph Search Application: Connected Components

initial state: all \(v \) undiscovered

for \(v = 1 \) to \(n \) do
 if state(\(v \)) \(!=\) fully-explored then
 BFS(\(v \)): setting \(A[u] \leftarrow v \) for each \(u \) found
 (and marking \(u \) discovered/fully-explored)
 endif
endfor

Total cost: \(O(n+m) \)

 each edge is touched a constant number of times (twice)

 works also with DFS