
1

Graphs and Graph Algorithms

Slides by Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- & Depth-first search
Three Algorithms:

Connected components
Bipartiteness
Topological sort

2

3

Graphs

An extremely important formalism for
representing (binary) relationships
Objects: "vertices," aka "nodes"
Relationships between pairs: "edges," aka
"arcs"

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges

4

Meg Ryan was in  
"French Kiss"  

with Kevin Kline

Meg Ryan was in  
"Sleepless in Seattle" 

with Tom Hanks

Kevin Bacon was in  
"Apollo 13"  

with Tom Hanks

5

Objects & Relationships

The Kevin Bacon Game:
Obj: Actors
Rel: Two are related if they've been in a movie together

Exam Scheduling:
Obj: Classes
Rel: Two are related if they have students in common

Traveling Salesperson Problem:
Obj: Cities
Rel: Two are related if can travel directly between them

6

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

7

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

8

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

9

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop"

"multi-
 edge"

10

Undirected Graph G = (V,E)
1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop"

"multi-
 edge"

11

�
Graphs don't live in Flatland

Geometrical drawing is mentally �
convenient, but mathematically�
irrelevant: 4 drawings, 1 graph.

A

7 4

3
A

7 4

3

A

7 4

3

A

7 4

3

12

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

13

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

14

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

15

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop"

"multi-
 edge"

16

Directed Graph G = (V,E)

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop"

"multi-
 edge"

17

A

7 4

3

Specifying undirected �
graphs as input

What are the vertices?
Explicitly list them: �
{"A", "7", "3", "4"}

What are the edges?
One possibility:
(symmetric) adjacency
matrix

€

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

18

A

7 4

3

Specifying directed �
graphs as input

What are the vertices?
Explicitly list them: �
{"A", "7", "3", "4"}

What are the edges?
(Nonsymmetric) adjacency
matrix:

€

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0

19

Let G be an undirected graph with n vertices and m
edges. How are n and m related?

�
�

Vertices vs # Edges

20

Let G be an undirected graph with n vertices and m
edges. How are n and m related?

Since
every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges),

it must be true that: �
�

 0 ≤ m ≤ n(n-1)/2 = O(n2)

Vertices vs # Edges

21

More Cool Graph Lingo

A graph is called sparse if m ≪ n2, otherwise it is
dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

22

More Cool Graph Lingo

A graph is called sparse if m ≪ n2, otherwise it is
dense

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n2), but n+m usually way better!

23

Representing Graph G = (V,E) �

Vertex set V = {v1, …, vn}
Adjacency Matrix A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits

Advantages?

Disadvantages?
€

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A

7 4 3

internally, indp of input format

24

Representing Graph G = (V,E) �

Vertex set V = {v1, …, vn}
Adjacency Matrix A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits

Advantages:
O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in
storage and access

m ≪ n2

€

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A

7 4 3

internally, indp of input format

25

Representing Graph G=(V,E) �
n vertices, m edges

Adjacency List:
O(n+m) words

Advantages?

Disadvantages? 7

7

v3

v2

v1

vn

2 6

2 4

3

5

1

26

Representing Graph G=(V,E) �
n vertices, m edges

Adjacency List:
O(n+m) words

Advantages:
Compact for �
sparse graphs

Disadvantages
More complex data structure

no O(1) edge test

7

7

v3

v2

v1

vn

2 6

2 4

3

5

1

27

Representing Graph G=(V,E) �
n vertices, m edges

Adjacency List:
O(n+m) words

Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don't bother if not)

1

7

v3

v2

v1

v7

2 6

2 4

3

5

1

28

Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:
Breadth-First Search: order the nodes in
successive layers based on distance from s
Depth-First Search: more natural approach for
exploring a maze; many efficient algs build on it.

29

Breadth-First Search

Completely explore the vertices in order of
their distance from s

Naturally implemented using a queue

30

Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored

31

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"
BFS(s)

mark s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u fully explored

32

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1

33

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3

34

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4

35

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

36

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

37

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

38

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
10 11 12 13

39

BFS(v)
1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

40

BFS: Analysis, I
Global initialization: mark all vertices "undiscovered"
BFS(s)

mark s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u fully explored

Simple analysis: �
2 nested loops.
Get worst-case
number of
iterations of
each; multiply.

O(n)

+

O(1)
+

O(n)

x

O(n)

=
O(n2)

41

BFS: Analysis, II

Above analysis correct, but pessimistic (can't have �
Ω(n) edges incident to each of Ω(n) distinct "u"
vertices if G is sparse). Alt, more global analysis:

Each edge is explored once �
from each end-point, so total �
runtime of inner loop is O(m).

Total O(n+m), n = # nodes, m = # edges

Exercise: extend
algorithm and
analysis to non-
connected graphs

42

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from
v to x.
Edges into then-undiscovered vertices define a tree
– the "breadth first spanning tree" of G

43

Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from
v to x.
Edges into then-undiscovered vertices define a tree
– the "breadth first spanning tree" of G
Level i in this tree are exactly those vertices �
u such that the shortest path (in G, not just the �

tree) from the root v is of length i.
All non-tree edges join vertices on the �
same or adjacent levels

not true
of every
spanning
tree!

44

BFS Application: Shortest Paths
1

2 3

10

5

4

9

12
8

13

6
7

11

0

1

2

3

4
can label by distances from start 

all edges connect same/adjacent levels

Tree (solid edges)  
gives shortest
paths from  
start vertex

45

Tree (solid edges)  
gives shortest
paths from  
start vertex

BFS Application: Shortest Paths
1

2 3

10

5

4

9

8

13

6 7

11

0

1

2

3

4
can label by distances from start 

all edges connect same/adjacent levels

12

46

Tree (solid edges)  
gives shortest
paths from  
start vertex

BFS Application: Shortest Paths
1

2 3

10

5
4

9

8

13

6 7

11

0

1

2

3

4 can label by distances from start 
all edges connect same/adjacent levels

12

47

Tree (solid edges)  
gives shortest
paths from  
start vertex

BFS Application: Shortest Paths
1

2 3

10

5 4

9 8

13

6 7

11

0

1

2

3

4 can label by distances from start 
all edges connect same/adjacent levels

12

48

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph
problem: find a "nice" tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has
interesting structure…

49

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"
BFS(s)

mark s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u fully explored

Exercise: modify
code to compute
level numbers

Label edges as tree
edges or non-tree
edges (within/
between)

Number of distinct
shortest paths

50

Graph Search Application:
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Set up one-time data structure to answer such
questions efficiently.

51

Graph Search Application:
Connected Components

initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then
BFS(v)

 endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS

Exercise: modify
code to answer CC
queries

52

Q: Why not
create 2-d
array
Path[u,v]?

Graph Search Application:
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Idea: create array A such that
A[u] = smallest numbered vertex that�
is connected to u. Question reduces �
to whether A[u]=A[v]?

53

Q: Why not
create 2-d
array
Path[u,v]?

Graph Search Application:
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Idea: create array A such that
A[u] = smallest numbered vertex that�
is connected to u. Question reduces �
to whether A[u]=A[v]?

54

Graph Search Application:
Connected Components

initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then
BFS(v): setting A[u] ←v for each u found �
(and marking u discovered/fully-explored) �

endif
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS

