Graphs and Graph Algorithms

Slides by Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- \& Depth-first search
Three Algorithms:
Connected components
Bipartiteness
Topological sort

Graphs

An extremely important formalism for representing (binary) relationships
Objects: "vertices," aka "nodes"
Relationships between pairs: "edges," aka "arcs"
Formally, a graph $G=(V, E)$ is a pair of sets,
V the vertices and E the edges

Meg Ryan was in "French Kiss" with Kevin Kline

> Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Kevin Bacon was in
"Apollo 13" with Tom Hanks

Objects \& Relationships

The Kevin Bacon Game:
Obj: Actors
Rel: Two are related if they've been in a movie together
Exam Scheduling:
Obj: Classes
Rel: Two are related if they have students in common
Traveling Salesperson Problem:
Obj: Cities
Rel: Two are related if can travel directly between them

Undirected Graph $\quad G=(V, E)$

Undirected Graph $\quad G=(V, E)$

Undirected Graph $\quad G=(V, E)$

(12)
(13)

Undirected Graph $G=(V, E)$

Undirected Graph $\quad G=(V, E)$

Graphs don't live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, I graph.

Directed Graph G = (V,E)

Directed Graph G = (V,E)

Directed Graph G = (V,E)

(12)
(13)

Directed Graph G = (V,E)

Directed Graph G = (V,E)

Specifying undirected graphs as input

What are the vertices?
Explicitly list them: \{"A", "7", "3", "4"\}

What are the edges?
One possibility:
(symmetric) adjacency matrix

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Specifying directed graphs as input

What are the vertices?
Explicitly list them: \{"A", "7", "3", "4"\}

What are the edges?
(Nonsymmetric) adjacency matrix:

	A	7	3	4
A	0	0	1	1
7	0	0	0	0
3	0	0	0	0
4	1	1	1	0

\# Vertices vs \# Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

\# Vertices vs \# Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?
Since
every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),
it must be true that:

$$
0 \leq m \leq n(n-I) / 2=O\left(n^{2}\right)
$$

More Cool Graph Lingo

A graph is called sparse if $m<n^{2}$, otherwise it is dense

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.
Sparse graphs are common in practice
E.g., all planar graphs are sparse ($m \leq 3 n-6$, for $n \geq 3$)
Q : which is a better run time, $O(n+m)$ or $O\left(n^{2}\right)$?

More Cool Graph Lingo

A graph is called sparse if $m<n^{2}$, otherwise it is dense

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega\left(n^{2}\right)$ edges is dense.
Sparse graphs are common in practice
E.g., all planar graphs are sparse ($m \leq 3 n-6$, for $n \geq 3$)

Q : which is a better run time, $O(n+m)$ or $O\left(n^{2}\right)$?
A: $O(n+m)=O\left(n^{2}\right)$, but $n+m$ usually way better!

Representing Graph G $=(\mathrm{V}, \mathrm{E})$
 internally, indp of input format

Vertex set $V=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
Adjacency Matrix A
$A[i, j]=I$ iff $\left(v_{i}, v_{j}\right) \in E$
Space is n^{2} bits
Advantages?

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

Disadvantages?

Representing Graph G = (V,E)

Vertex set $V=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
Adjacency Matrix A

$$
A[i, j]=I \text { iff }\left(v_{i}, v_{j}\right) \in E
$$

Space is n^{2} bits
Advantages:

	A	7	3	4
A	0	0	1	1
7	0	0	0	1
3	1	0	0	1
4	1	1	1	0

$\mathrm{O}(\mathrm{I})$ test for presence or absence of edges.
Disadvantages: inefficient for sparse graphs, both in storage and access

Representing Graph $G=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

Adjacency List:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words

Advantages?

Disadvantages?

Representing Graph $G=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

Adjacency List:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words
Advantages:
Compact for sparse graphs

Disadvantages
More complex data structure no $\mathrm{O}(\mathrm{I})$ edge test

Representing Graph $G=(\mathrm{V}, \mathrm{E})$ n vertices, m edges

Adjacency List:

$\mathrm{O}(\mathrm{n}+\mathrm{m})$ words

Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, if needed, (don't bother if not)

Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:
Breadth-First Search: order the nodes in successive layers based on distance from s
Depth-First Search: more natural approach for exploring a maze; many efficient algs build on it. ${ }^{28}$

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s"discovered"
queue $=\{s$ \}
while queue not empty
u = remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully explored

BFS: Analysis, I

O(n) Global initialization: mark all vertices "undiscovered"
$+\mathrm{BFS}(\mathrm{s})$

Simple analysis:
2 nested loops.
Get worst-case number of iterations of each; multiply.

BFS: Analysis, II

Above analysis correct, but pessimistic (can't have $\Omega(\mathrm{n})$ edges incident to each of $\Omega(\mathrm{n})$ distinct "u" vertices if G is sparse). Alt, more global analysis:

Each edge is explored once from each end-point, so total runtime of inner loop is $\mathrm{O}(\mathrm{m})$.

Exercise: extend algorithm and analysis to nonconnected graphs

Total $O(n+m), n=\#$ nodes, $m=\#$ edges

Properties of (Undirected) BFS(v)

$B F S(v)$ visits x if and only if there is a path in G from v to X .
Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G

Properties of (Undirected) BFS(v)

$B F S(v)$ visits x if and only if there is a path in G from v to X .
Edges into then-undiscovered vertices define a tree - the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
All non-tree edges join vertices on the
not true
of every
spanning
tree! same or adjacent levels

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from

BFS Application: Shortest Paths

Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized DFS (below) finds a different tree, but it also has interesting structure...

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" BFS(s)
mark s "discovered"
queue $=\{s\}$
while queue not empty
$u=$ remove_first(queue)
for each edge $\{u, x\}$
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully explored

Exercise: modify code to compute level numbers

Label edges as tree edges or non-tree edges (within/ between)

Number of distinct shortest paths

Graph Search Application: Connected Components

Want to answer questions of the form: given vertices u and v, is there a path from u to v ?

Set up one-time data structure to answer such questions efficiently.

Graph Search Application: Connected Components

initial state: all v undiscovered
for $\mathrm{v}=\mathrm{I}$ to n do
if state(v) != fully-explored then BFS(v)
endif
endfor
Exercise: modify code to answer CC queries
Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times (twice)
works also with DFS

Graph Search Application: Connected Components

Want to answer questions of the form: given vertices u and v, is there a path from u to v ?
Idea: create array A such that $\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex that is connected to u. Question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Q: Why not create 2-d array
Path[u,v]?

Graph Search Application: Connected Components

Want to answer questions of the form: given vertices u and v, is there a path from u to v ?
Idea: create array A such that $\mathrm{A}[\mathrm{u}]=$ smallest numbered vertex that is connected to u. Question reduces to whether $\mathrm{A}[\mathrm{u}]=\mathrm{A}[\mathrm{v}]$?

Q: Why not create 2-d array
Path[u,v]?

Graph Search Application: Connected Components

initial state: all v undiscovered for $\mathrm{v}=\mathrm{I}$ to n do if state(v) != fully-explored then BFS(v): setting A[u] $\leftarrow v$ for each u found (and marking u discovered/fully-explored) endif
endfor
Total cost: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
each edge is touched a constant number of times (twice) works also with DFS

