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Graphs and Graph Algorithms

Slides by Larry Ruzzo



Goals

Graphs: defns, examples, utility, terminology
Representation: input, internal
Traversal: Breadth- & Depth-first search
Three Algorithms:

Connected components
Bipartiteness
Topological sort
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Graphs

An extremely important formalism for 
representing (binary) relationships
Objects: "vertices," aka "nodes"
Relationships between pairs: "edges," aka 
"arcs"

Formally, a graph G = (V, E) is a pair of sets, 
V the vertices and E the edges
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Meg Ryan was in  
"French Kiss"  

with Kevin Kline

Meg Ryan was in  
"Sleepless in Seattle" 

with Tom Hanks

Kevin Bacon was in  
"Apollo 13"  

with Tom Hanks 
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Objects & Relationships

The Kevin Bacon Game:
Obj: Actors
Rel: Two are related if they've been in a movie together

Exam Scheduling:
Obj: Classes
Rel: Two are related if they have students in common

Traveling Salesperson Problem:
Obj: Cities
Rel: Two are related if can travel directly between them
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�
Graphs don't live in Flatland

Geometrical drawing is mentally �
convenient, but mathematically�
irrelevant: 4 drawings, 1 graph.
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Directed Graph G = (V,E)
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Specifying undirected �
graphs as input

What are the vertices?
Explicitly list them: �
{"A", "7", "3", "4"}

What are the edges?
One possibility:
(symmetric) adjacency 
matrix

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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Specifying directed �
graphs as input

What are the vertices?
Explicitly list them: �
{"A", "7", "3", "4"}

What are the edges?
(Nonsymmetric) adjacency 
matrix:

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?

�
�

   

# Vertices vs # Edges
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?

Since 
every edge connects two different vertices (no loops), 
and no two edges connect the same two vertices (no 
multi-edges), 

it must be true that: �
�

    0 ≤ m ≤ n(n-1)/2 = O(n2)

# Vertices vs # Edges
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More Cool Graph Lingo

A graph is called sparse if m ≪ n2, otherwise it is 
dense

Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?
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More Cool Graph Lingo

A graph is called sparse if m ≪ n2, otherwise it is 
dense

Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, Ω(n2) edges is dense.

Sparse graphs are common in practice
E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n2), but n+m usually way better!
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Representing Graph  G = (V,E) �

Vertex set V = {v1, …, vn}
Adjacency Matrix   A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits

Advantages? 

Disadvantages?
€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A 

7 4 3 

internally, indp of input format
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Representing Graph  G = (V,E) �

Vertex set V = {v1, …, vn}
Adjacency Matrix   A

A[i,j] = 1 iff (vi,vj) ∈ E

Space is n2 bits

Advantages: 
O(1) test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in 
storage and access

m ≪ n2

€ 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A 

7 4 3 

internally, indp of input format
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Representing Graph  G=(V,E) �
n vertices,  m edges

Adjacency List:
O(n+m) words

Advantages?

Disadvantages? 7
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Representing Graph  G=(V,E) �
n vertices,  m edges

Adjacency List:
O(n+m) words

Advantages:
Compact for �
sparse graphs

Disadvantages
More complex data structure 

no O(1) edge test
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Representing Graph  G=(V,E) �
n vertices,  m edges

Adjacency List:
O(n+m) words

Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges, if 
needed,  (don't bother if not)

1

7

v3

v2

v1

v7

2 6

2 4

3

5

1



28

Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s

Being orderly helps.  Two common ways:
Breadth-First Search: order the nodes in 
successive layers based on distance from s
Depth-First Search: more natural approach for 
exploring a maze; many efficient algs build on it.
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Breadth-First Search

Completely explore the vertices in order of 
their distance from s

Naturally implemented using a queue
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Graph Traversal: Implementation

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s

Three states of vertices
undiscovered
discovered
fully-explored
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BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" 
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored
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BFS(v)
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BFS(v)
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BFS(v)
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BFS(v)
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BFS: Analysis, I
Global initialization: mark all vertices "undiscovered" 
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored

Simple analysis: �
2 nested loops.   
Get worst-case 
number of 
iterations of 
each; multiply. 

O(n)

+

O(1)
+

O(n)

x

O(n)

=
O(n2)
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BFS: Analysis, II

Above analysis correct, but pessimistic (can't have �
Ω(n) edges incident to each of Ω(n) distinct "u" 
vertices if G is sparse).  Alt, more global analysis:

Each edge is explored once �
from each end-point, so total �
runtime of inner loop is O(m).

Total O(n+m), n = # nodes, m = # edges

Exercise:  extend 
algorithm and 
analysis to non-
connected graphs
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Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from 
v to x.
Edges into then-undiscovered vertices define a tree 
– the "breadth first spanning tree" of G
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Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from 
v to x.
Edges into then-undiscovered vertices define a tree 
– the "breadth first spanning tree" of G
Level i in this tree are exactly those vertices �
u such that the shortest path (in G, not just the �

tree) from the root v is of length i.
All non-tree edges join vertices on the �
same or adjacent levels

not true 
of every 
spanning 
tree!
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BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 
paths from  
start vertex

BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 
paths from  
start vertex

BFS Application: Shortest Paths
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Tree (solid edges)  
gives shortest 
paths from  
start vertex

BFS Application: Shortest Paths
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Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph 
problem: find a "nice" tree in the graph, i.e., one 
such that non-tree edges have some simplifying 
structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has 
interesting structure…



49

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered" 
BFS(s) 

mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully explored

Exercise: modify 
code to compute 
level numbers

Label edges as tree 
edges or non-tree 
edges (within/
between)

Number of distinct 
shortest paths
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Graph Search Application: 
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Set up one-time data structure to answer such 
questions efficiently.
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Graph Search Application: 
Connected Components

initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then                                 
BFS(v)

 endif                                                                               
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS

Exercise: modify 
code to answer CC 
queries
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Q: Why not 
create 2-d 
array 
Path[u,v]?

Graph Search Application: 
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Idea: create array A such that 
A[u] = smallest numbered vertex that�
is connected to u.  Question reduces �
to whether A[u]=A[v]?
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Q: Why not 
create 2-d 
array 
Path[u,v]?

Graph Search Application: 
Connected Components

Want to answer questions of the form:
given vertices u and v, is there a �
path from u to v?

Idea: create array A such that 
A[u] = smallest numbered vertex that�
is connected to u.  Question reduces �
to whether A[u]=A[v]?
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Graph Search Application: 
Connected Components

initial state: all v undiscovered�
for v = 1 to n do�

if state(v) != fully-explored then                                 
BFS(v): setting A[u] ←v for each u found �
(and marking u discovered/fully-explored) �

endif                                                                               
endfor

Total cost: O(n+m)
each edge is touched a constant number of times (twice)
works also with DFS


