

Chapter 5
 Divide and Conquer

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

Divide et impera.
Veni, vidi, vici.
Julius Caesar

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library. obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
problems become easy once
items are in sorted order
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management. non-obvious applications
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

A	L	G	O	R
A	G	L	O	R

A	G	H	I	L	M	O	R	S	T	merge $O(n)$

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.


```
A G H I
```


A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.

Proof by Recursion Tree

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $n>1$:

$$
\begin{aligned}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n}+1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4}+1+1 \\
& \cdots \\
& =\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n
\end{aligned}
$$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Define $n_{1}=\lfloor n / 2\rfloor, n_{2}=\lceil n / 2\rceil$.
- Induction step: assume true for $1,2, \ldots, n-1$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \leq n_{1}\left\lceil\lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n_{1}\left\lceil\lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =\lceil n / 2\rceil \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil} / 2 \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ... n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Inversions
3-2, 4-2

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.
1	5	4	8	10	2	6	9	12	11	3	7	

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.
1	5	4	8	10	2	6	9	12	11	3	7	Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions					8 green-green inversions							
5-4, 5-2, 4-2, 8-2, 10-2					$6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7$							

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.
- Merge two sorted halves into sorted whole.
to maintain sorted invariant

13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$
$\begin{array}{lllllllllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 & \text { Merge: } O(n)\end{array}$

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    (r}\mp@subsup{\textrm{A}}{\textrm{A}}{\prime},\textrm{A})\leftarrow\mathrm{ Sort-and-Count(A)
    (r}\mp@subsup{r}{B}{\prime},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r , L) }\leftarrow Merge-and-Count (A, B)
    return r = rat r r 
}
```

