Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

auxiliary array

Total:

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2 auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2 3 auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2 3 auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2 | | 3 | 7 | |
| :--- | :--- | :--- | :--- |
| auxiliary array | | | |

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$\begin{array}{lll}2 & 3 & 7\end{array}$
auxiliary array

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| auxiliary array | | | | | | |

Total: 6

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	11

auxiliary array

Total: $6+3$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

2	3	7	10	11

auxiliary array

Total: $6+3$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | 11 | 14 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| auxiliary array | | | | | | | |

Total: $6+3$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | 11 | 14 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| auxiliary array | | | | | | | |

Total: $6+3$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

$\begin{array}{lllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16\end{array}$
auxiliary array

Total: $6+3+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total: $6+3+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 17 | | \quad auxiliary array |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 17 | | auxiliary array |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Total: $6+3+2+2$

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

Merge and Count

Merge and count step.

- Given two sorted halves, count number of inversions where a_{i} and a_{j} are in different halves.
- Combine two sorted halves into sorted whole.

