Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Dynamic Programming: Binary Choice

Notation. \(OPT(j) = \) value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- **Case 1:** \(OPT \) selects job j.
 - collect profit \(v_j \)
 - can't use incompatible jobs \{ p(j) + 1, p(j) + 2, ..., j - 1 \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

- **Case 2:** \(OPT \) does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + OPT(p(j)), \ OPT(j-1) \right\} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force

Brute force algorithm.

\[
\text{Input: } n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n
\]

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

\[
\text{Compute-Opt}(j) \{
\text{if } (j = 0) \\
\quad \text{return } 0 \\
\text{else} \\
\quad \text{return } \max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))
\}
\]
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[p(1) = 0, \ p(j) = j-2 \]

![Diagram](image-url)
Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

for $j = 1$ to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max($v_j + M$-Compute-Opt($p(j)$), M-Compute-Opt($j-1$))
 return M[j]
}
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.
- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.

- M-$\text{Compute-Opt}(j)$: each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls

- Progress measure $\Phi = \# \text{ nonempty entries of } M[\cdot]$.
 - initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 \Rightarrow at most $2n$ recursive calls.

- **Overall running time of** M-$\text{Compute-Opt}(n)$ **is** $O(n)$.

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n)$ after sorting by start time.

- $M\text{-Compute-Opt}(j)$: each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$,
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls

- Progress measure $\Phi = \# \text{nonempty entries of } M[]$.
 - initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 ⇒ at most $2n$ recursive calls.

- Overall running time of $M\text{-Compute-Opt}(n)$ is $O(n)$.

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n\)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n\).

Compute \(p(1), p(2), \ldots, p(n)\)

Iterative-Compute-Opt {
 \(M[0] = 0\)
 for \(j = 1\) to \(n\)
 \(M[j] = \max(v_j + M[p(j)], M[j-1])\)
 }

Output \(M[n]\)

Claim: \(M[j]\) is value of optimal solution for jobs 1..\(j\)
Timing: Easy. Main loop is \(O(n)\); sorting is \(O(n \log n)\)
Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j) =$ largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

<table>
<thead>
<tr>
<th>j</th>
<th>v_j</th>
<th>p_j</th>
<th>opt_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time

0 1 2 3 4 5 6 7 8 9 10 11
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing - “traceback”

```plaintext
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (v_j + M[p(j)] > M[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- # of recursive calls ≤ n ⇒ O(n).
Dynamic Programming - iterative approach

Have a collection of subproblems that satisfy a few basic properties:

- Only polynomially many.
- The solution to the original problem can be easily computed from the solutions to the subproblems.
- There is a natural ordering on subproblems from “smallest” to “largest” together with an easy to compute recurrence that allows us to determine the solution to a subproblem from the solution to some number of smaller subproblems.
6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.
- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3, 4\}$ has value 40.

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

$W = 11$

Greedy: repeatedly add item with maximum ratio v_i / w_i.
Ex: $\{5, 2, 1\}$ achieves only value $= 35 \Rightarrow$ greedy not optimal.
Dynamic Programming: False Start

Def. $OPT(i) =$ max profit subset of items $1, \ldots, i$.

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$

- **Case 2:** OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i,
 we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) = \text{max profit subset of items 1, ..., i with weight limit } w.$

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, ..., i-1\}$ using weight limit w

- **Case 2:** OPT selects item i.
 - New weight limit $= w - w_i$
 - OPT selects best of $\{1, 2, ..., i-1\}$ using this new weight limit

\[
OPT(i, w) = \begin{cases}
 0 & \text{if } i = 0 \\
 OPT(i - 1, w) & \text{if } w_i > w \\
 \max\{OPT(i - 1, w), v_i + OPT(i - 1, w - w_i)\} & \text{otherwise}
\end{cases}
\]
Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

\(M(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

Input: \(n, W, w_1, \ldots, w_N, v_1, \ldots, v_N \)

\[
\begin{align*}
\text{for } & \ w = 0 \text{ to } \ W \\
& \ M[0, w] = 0 \\
\text{for } & \ i = 1 \text{ to } \ n \\
& \ \ \text{for } \ w = 1 \text{ to } \ W \\
& \ \ \ \ \text{if } \ (w_i > w) \\
& \ \ \ \ \quad M[i, w] = M[i-1, w] \\
& \ \ \ \ \text{else} \\
& \ \ \ \ \quad M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\} \\
\text{return } & \ M[n, W]
\end{align*}
\]
\(M(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

Input: \(n, W, w_1, \ldots, w_N, v_1, \ldots, v_N \)

\[
\text{for } w = 0 \text{ to } W \\
M[0, w] = 0
\]

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{for } w = 1 \text{ to } W \\
\quad \quad \text{if } (w_i > w) \\
\quad \quad \quad M[i, w] = M[i-1, w] \\
\quad \quad \text{else} \\
\quad \quad \quad M[i, w] = \text{max} \{ M[i-1, w], v_i + M[i-1, w-w_i] \}
\]

\text{return } M[n, W]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)
Knapsack Algorithm

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\phi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\{1, 2\} & 0 & 1 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\{1, 2, 3\} & 0 & 1 & 6 & 7 & 7 & 18 & 19 & 24 & 25 & 25 & 25 \\
\{1, 2, 3, 4\} & 0 & 1 & 6 & 7 & 7 & 18 & 22 & 24 & 28 & 29 & 29 \\
\{1, 2, 3, 4, 5\} & 0 & 1 & 6 & 7 & 7 & 18 & 22 & 28 & 29 & 34 & 34 \\
\end{array}
\]

\text{OPT: } \{4, 3\}
\text{value} = 22 + 18 = 40

W = 11

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>
\[M(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \]

Input: \(n, W, w_1, \ldots, w_N, v_1, \ldots, v_N \)

for \(w = 0 \) to \(W \)

\[
M[0, w] = 0
\]

for \(i = 1 \) to \(n \)

for \(w = 1 \) to \(W \)

if \((w_i > w) \)

\[
M[i, w] = M[i-1, w]
\]

else

\[
M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]

return \(M[n, W] \)

How do you find the actual solution once you’re filled out the table?
Dynamic Programming – iterative approach

Have a collection of subproblems that satisfy a few basic properties:

- Only polynomially many (hopefully)

- The solution to the original problem can be easily computed from the solutions to the subproblems.

- There is a natural ordering on subproblems from “smallest” to “largest” together with an easy to compute recurrence that allows us to determine the solution to a subproblem from the solution to some number of smaller subproblems.
Knapsack Problem: Running Time

Running time. $\Theta(nW)$.
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]
6.6 Sequence Alignment
String Similarity

How similar are two strings?

- occurrence
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
Edit Distance

Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ; mismatch penalty α_{pq}.
- Cost = sum of gap and mismatch penalties.

\[\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA} \]

\[2\delta + \alpha_{CA} \]
Goal: Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and $x_{i'}$-$y_{j'}$ cross if $i < i'$, but $j > j'$. Don’t allow crossing.

$$\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha_{x_i y_j} + \sum_{i : x_i \text{ unmatched}} \delta + \sum_{j : y_j \text{ unmatched}} \delta$$

Ex: CTACCG vs. TACATG.
Sol: $M = x_2$-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6.
Sequence Alignment: Problem Structure

Def. $OPT(i, j) = \min \text{ cost of aligning strings } x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j.$

- **Case 1:** OPT matches x_i-y_j.
 - pay mismatch for x_i-y_j + min cost of aligning two strings $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_{j-1}$
- **Case 2a:** OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_j$
- **Case 2b:** OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_{j-1}$

\[
OPT(i, j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \min \{ \alpha_{x_i y_j} + OPT(i-1, j-1), \\
 \delta + OPT(i-1, j), \\
 \delta + OPT(i, j-1) \} & \text{otherwise} \\
 i\delta & \text{if } j = 0
\end{cases}
\]
Sequence Alignment: Algorithm

Sequence-Alignment(m, n, \(x_1 x_2 \ldots x_m\), \(y_1 y_2 \ldots y_n\), \(\delta\), \(\alpha\)) {
 for i = 0 to m
 M[i, 0] = i\delta
 for j = 0 to n
 M[0, j] = j\delta

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(\(\alpha[x_i, y_j] + M[i-1, j-1]\),
 \(\delta + M[i-1, j]\),
 \(\delta + M[i, j-1]\))

 return M[m, n]
}

Analysis. \(\Theta(mn)\) time and space.

English words or sentences: \(m, n \leq 10\).

Computational biology: \(m = n = 100,000\). 10 billions ops OK, but 10GB array?
Dynamic Programming - iterative/bottom-up approach

Have a collection of subproblems that satisfy a few basic properties:

- Only polynomially many.
- The solution to the original problem can be easily computed from the solutions to the subproblems.
- There is a natural ordering on subproblems from “smallest” to “largest” together with an easy to compute recurrence that allows us to determine the solution to a subproblem from the solution to some number of smaller subproblems.