6. Dynamic Programming II

- sequence alignment
- Hirschberg's algorithm
- Bellman-Ford
- distance vector protocols
- negative cycles in a digraph
Shortest path problem. Given a digraph $G = (V, E)$, with arbitrary edge weights or costs c_{vw}, find cheapest path from node s to node t.

Cost of path = $9 - 3 + 1 + 11 = 18$
Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

![Graph](image)

Reweighting. Adding a constant to every edge weight can fail.

![Graph](image)
Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

A negative cycle W:

$$c(W) = \sum_{e \in W} c_e < 0$$
Shortest paths and negative cycles

Lemma 1. If some path from \(v \) to \(t \) contains a negative cycle, then there does not exist a cheapest path from \(v \) to \(t \).

\[
c(W) < 0
\]
Shortest paths and negative cycles

Lemma 1. If some path from v to t contains a negative cycle, then there does not exist a cheapest path from v to t.

Pf. If there exists such a cycle W, then can build a $v \rightarrow t$ path of arbitrarily negative weight by detouring around cycle as many times as desired. □
Lemma 2. If G has no negative cycles, then there exists a cheapest path from v to t that is simple (and has $\leq n - 1$ edges).
Lemma 2. If G has no negative cycles, then there exists a cheapest path from v to t that is simple (and has $\leq n - 1$ edges).

Pf.
- Consider a cheapest $v \rightarrow t$ path P that uses the fewest number of edges.
- If P contains a cycle W, can remove portion of P corresponding to W without increasing the cost. ■
Shortest path and negative cycle problems

Shortest path problem. Given a digraph $G = (V, E)$ with edge weights c_{vw} and no negative cycles, find cheapest $v \rightarrow t$ path for each node v.

Negative cycle problem. Given a digraph $G = (V, E)$ with edge weights c_{vw}, find a negative cycle (if one exists).
Shortest paths: dynamic programming

Def. \(OPT(i, v) = \text{cost of shortest } v \to t \text{ path that uses } \leq i \text{ edges.} \)
Shortest paths: dynamic programming

Def. \(OPT(i, v) = \) cost of shortest \(v \rightarrow t \) path that uses \(\leq i \) edges.

- Case 1: Cheapest \(v \rightarrow t \) path uses \(\leq i - 1 \) edges.
 - \(OPT(i, v) = OPT(i - 1, v) \)

- Case 2: Cheapest \(v \rightarrow t \) path uses exactly \(i \) edges.
 - If \((v, w) \) is first edge, then \(OPT \) uses \((v, w) \), and then selects best \(w \rightarrow t \) path using \(\leq i - 1 \) edges

\[
OPT(i, v) = \begin{cases}
\infty & \text{if } i = 0 \\
\min \left\{ \min_{(v, w) \in E} \left\{ OPT(i - 1, v), \min OPT(i - 1, w) + c_{vw} \right\} \right\} & \text{otherwise}
\end{cases}
\]

Observation. If no negative cycles, \(OPT(n - 1, v) = \) cost of cheapest \(v \rightarrow t \) path.

Pf. By Lemma 2, cheapest \(v \rightarrow t \) path is simple. ▪
Shortest paths: implementation

SHORTEST-PATHS (V, E, c, t)

FOREACH node $v \in V$

$M[0, v] \leftarrow \infty.$

$M[0, t] \leftarrow 0.$

FOR $i = 1$ **TO** $n - 1$

FOREACH node $v \in V$

$M[i, v] \leftarrow M[i - 1, v].$

FOREACH edge $(v, w) \in E$

$M[i, v] \leftarrow \min \{ M[i, v], M[i - 1, w] + c_{vw} \}.$
Theorem 1. Given a digraph $G = (V, E)$ with no negative cycles, the dynamic programming algorithm computes the cost of the cheapest $v \rightarrow t$ path for each node v in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.

• Table requires $\Theta(n^2)$ space.
• Each iteration i takes $\Theta(m)$ time since we examine each edge once. □

Finding the shortest paths.

• Approach 1: Maintain a successor(i, v) that points to next node on cheapest $v \rightarrow t$ path using at most i edges.
• Approach 2: Compute optimal costs $M[i, v]$ and consider only edges with $M[i, v] = M[i - 1, w] + c_{vw}$.
Shortest paths: practical improvements

Space optimization. Maintain two 1d arrays (instead of 2d array).

- $d(v) =$ cost of cheapest $v \rightarrow t$ path that we have found so far.
- $successor(v) =$ next node on a $v \rightarrow t$ path.

Performance optimization. If $d(w)$ was not updated in iteration $i - 1$, then no reason to consider edges entering w in iteration i.
Bellman-Ford: efficient implementation

Bellman-Ford \((V, E, c, t)\)

Foreach node \(v \in V\)

\[d(v) \leftarrow \infty. \]
\[\text{successor}(v) \leftarrow \text{null}. \]

\(d(t) \leftarrow 0.\)

For \(i = 1\) **to** \(n - 1\)

Foreach node \(w \in V\)

If \((d(w)\) was updated in previous iteration)

Foreach edge \((v, w) \in E\)

If \((d(v) > d(w) + c_{vw})\)

\[d(v) \leftarrow d(w) + c_{vw}. \]
\[\text{successor}(v) \leftarrow w. \]

If no \(d(w)\) value changed in iteration \(i\), **Stop**.
Lemma 3. Throughout Bellman-Ford algorithm, $d(v)$ is the cost of some $v \rightarrow t$ path; after the i^{th} pass, $d(v)$ is no larger than the cost of the cheapest $v \rightarrow t$ path using $\leq i$ edges.

Pf. [by induction on i]

- Assume true after i^{th} pass.
- Let P be any $v \rightarrow t$ path with $i + 1$ edges.
- Let (v, w) be first edge on path and let P' be subpath from w to t.
- By inductive hypothesis, $d(w) \leq c(P')$ since P' is a $w \rightarrow t$ path with i edges.
- After considering v in pass $i+1$: $d(v) \leq c_{vw} + d(w) \leq c_{vw} + c(P') = c(P)$ □

Theorem 2. Given a digraph with no negative cycles, Bellman-Ford computes the costs of the cheapest $v \rightarrow t$ paths in $O(mn)$ time and $\Theta(n)$ extra space.

Pf. Lemmas 2 + 3. □

can be substantially faster in practice
Bellman-Ford: analysis

Claim. After the i^{th} pass of Bellman Ford, $d(v)$ equals the cost of the cheapest $v \rightarrow t$ path using at most i edges.

Counterexample. Claim is false!

if nodes w considered before node v, then $d(v) = 3$ after 1 pass
Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following \(\text{successor}(v) \) pointers gives a directed path from \(v \) to \(t \) of cost \(d(v) \).

Counterexample. Claim is false!

- Cost of successor \(v \rightarrow t \) path may have strictly lower cost than \(d(v) \).

consider nodes in order: \(t, 1, 2, 3 \)

\[
\begin{align*}
s(2) &= 1 \\
d(2) &= 20 \\
s(1) &= t \\
d(1) &= 10 \\
s(3) &= t \\
d(3) &= 1 \\
d(t) &= 0
\end{align*}
\]
Bellman-Ford: analysis

Claim. Throughout the Bellman-Ford algorithm, following \textit{successor}(v) pointers gives a directed path from \(v\) to \(t\) of cost \(d(v)\).

Counterexample. Claim is false!
\begin{itemize}
 \item Cost of successor \(v \rightarrow t\) path may have strictly lower cost than \(d(v)\).
\end{itemize}

Consider nodes in order: \(t, 1, 2, 3\)

\begin{center}
\begin{tabular}{c}
\(s(2) = 1\) \\
\(d(2) = 20\) \\
\(s(1) = 3\) \\
\(d(1) = 2\) \\
\(d(t) = 0\)
\end{tabular}
\end{center}
6. Dynamic Programming II

- sequence alignment
- Hirschberg's algorithm
- Bellman-Ford
- distance vector protocols
- negative cycles in a digraph
Distance vector protocols

Communication network.
 • Node ≈ router.
 • Edge ≈ direct communication link.
 • Cost of edge ≈ delay on link.

Dijkstra's algorithm. Requires global information of network.

Bellman-Ford. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep. The order in which each for each loop executes in not important. Moreover, algorithm still converges even if updates are asynchronous.
Distance vector protocols

Distance vector protocols. ["routing by rumor"]

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs n separate computations, one for each potential destination node.

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).
Path vector protocols

Link state routing.
- Each router also stores the entire path.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
6. Dynamic Programming II

- sequence alignment
- Hirschberg's algorithm
- Bellman-Ford
- distance vector protocol
- negative cycles in a digraph
Detecting negative cycles

Negative cycle detection problem. Given a digraph $G = (V, E)$, with edge weights c_{vw}, find a negative cycle (if one exists).
Detecting negative cycles: application

Currency conversion. Given \(n \) currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

\[
0.741 \times 1.366 \times 0.995 = 1.00714497
\]
Arbitrage opportunities

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

$$0.741 \times 1.366 \times 0.995 = 1.00714497$$
Detecting negative cycles

Lemma 5. If \(OPT(n, v) = OPT(n - 1, v) \) for all \(v \), then no negative cycle can reach \(t \).

Pf. Bellman-Ford algorithm. □

Lemma 6. If \(OPT(n, v) < OPT(n - 1, v) \) for some node \(v \), then (any) cheapest path from \(v \) to \(t \) contains a cycle \(W \). Moreover \(W \) is a negative cycle.

Pf. [by contradiction]

- Since \(OPT(n, v) < OPT(n - 1, v) \), we know that shortest \(v \rightarrow t \) path \(P \) has exactly \(n \) edges.
- By pigeonhole principle, \(P \) must contain a directed cycle \(W \).
- Deleting \(W \) yields a \(v \rightarrow t \) path with \(< n \) edges \(\Rightarrow \) \(W \) has negative cost. □
Detecting negative cycles

Theorem 4. Can find a negative cycle in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.
- Add new node t and connect all nodes to t with 0-cost edge.
- G has a negative cycle iff G' has a negative cycle than can reach t.
- If $OPT(n, v) = OPT(n - 1, v)$ for all nodes v, then no negative cycles.
- If not, then extract directed cycle from path from v to t.
 (cycle cannot contain t since no edges leave t) □
Detecting negative cycles