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Chapter 4 
 
Greedy Algorithms 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 



4.5  Minimum Spanning Tree 
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Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is minimized. 
 
 
 
 
 
 
 
 
 

Cayley's Theorem.  There are nn-2 spanning trees of Kn. 
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G = (V, E) T,  Σe∈T ce = 50 

can't solve by brute force 
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Applications 

MST is fundamental problem with diverse applications. 

■  Network design. 
–  telephone, electrical, hydraulic, TV cable, computer, road 

■  Approximation algorithms for NP-hard problems. 
–  traveling salesperson problem, Steiner tree 

■  Indirect applications. 
–  max bottleneck paths 
–  LDPC codes for error correction 
–  image registration with Renyi entropy 
–  learning salient features for real-time face verification 
–  reducing data storage in sequencing amino acids in a protein 
–  model locality of particle interactions in turbulent fluid flows 
–  autoconfig protocol for Ethernet bridging to avoid cycles in a network 

■  Cluster analysis. 
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Greedy Algorithms 

Kruskal's algorithm.  Start with T = φ. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle. 
 
Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T. 
 
Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T. 
 
 
Remark.  All three algorithms produce an MST. 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
Also, the graph is connected. 
 
Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S.  Then the MST contains e. 
 
Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f. 
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f is not in the MST 
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Cycles and Cuts 

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a.  
 
 
 
 
 
 
 
 
Cutset.  A cut is a subset of nodes S.  The corresponding cutset D is 
the subset of edges with exactly one endpoint in S. 
 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
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Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8 
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Cycle-Cut Intersection 

Claim.  A cycle and a cutset intersect in an even number of edges. 
 
 
 
 
 
 
 
 
Pf.  (by picture) 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e. 
 
Pf.  (exchange argument) 
■  Suppose e does not belong to T*, and let's see what happens. 
■  Adding e to T* creates a cycle C in T*. 
■  Edge e is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say f, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f. 
 
Pf.  (exchange argument) 
■  Suppose f belongs to T*, and let's see what happens. 
■  Deleting f from T* creates a cut S in T*. 
■  Edge f is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say e, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 
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Greedy Algorithms 

 
 
Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T. 
 
 
Kruskal's algorithm.  Start with T = φ. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle. 
 



Prim’s Algorithm 

Initialize X = {s}        [vertex s can be chosen arbitrarily] 
T (edges in the tree) initialized to empty 
While not all vertices spanned 
■  Let e = (u,v) be the cheapest edge of G such that u in X and v in V-X 
■  Add e to T 
■  Add v to X 
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S 
At each step, 
increasing the 
number of 
spanned vertices 
in cheapest way 
possible. 
 



Correctness of Prim 

Theorem: Prim’s algorithm always computes an MST 
 
 
Proof:    
 
1. Every edge in T* is in MST by the cut property so 
               -- no cycles are created 
               -- edges are a subset of the MST. 

2.  But the set of edges spans the graph: can’t get stuck until X = V. 
Otherwise the cut (X, V-X) has no edges crossing it and the graph is 
disconnected. 
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Fast Implementation of Prim’s Algorithm 

Initialize X = {s}        [vertex s can be chosen arbitrarily] 
T initialized to empty 
While not all vertices spanned 
■  Let e = (u,v) be the cheapest edge of G such that u in X and v in V-X 
■  Add e to T 
■  Add v to X 

Straightforward implementation:   
■  O(n) iterations   [n = # of vertices] 
■  O(m) time per iteration  [m = # edges] 

■  Overall O(mn) 

■  Can get it down to O(m log n) using priority queue 
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Prim’s algorithm with priority queue  (similar to Dijkstra) 

Invariant # 1: Elements in priority queue = vertices of V-X 
 
Invariant # 2: For v in V-X,  set key[v] = cheapest edge (u,v) 

connecting v to X.   (infinity if there is no edge) 
 
Can initialize the PQ with O(m + n log n) = O(m log n) preprocessing time 
 
■  O(m) to figure out the initial key values 
■  O(n-1) inserts. 

 
Repeatedly use Delete-Min to get the vertex outside X with cheapest 

connection cost. 
 
Work to maintain invariant #2? 
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Prim’s algorithm with priority queue  (similar to Dijkstra) 

Invariant # 2: For v in V-X,  set key[v] = cheapest edge (u,v) 
connecting v to X. 

 
To maintain this invariant after DeleteMin, may need to recompute 

some keys. 
 
When v added to X: 
■  For each edge (v,w) in E 

–  If w in V-X  then 
Delete w from PQ 
Recompute key[w] := min{ key[w], cvw} 

Re-insert w into PQ 
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Implementation:  Prim's Algorithm 

Prim(G, c) { 
   foreach (v ∈ V) key[v] ← ∞ 
   Initialize an empty priority queue Q 
   foreach (v ∈ V) insert v onto Q 
   Initialize set of explored nodes S ← φ 
 
   while (Q is not empty) { 
      u ← delete min element from Q 
      S ← S ∪ { u } 
      foreach (edge e = (u, v) incident to u) 
          if ((v ∉ S) and (ce < key[v])) 
             decrease priority key[v] to ce 
} 

Implementation.  Use a priority queue ala Dijkstra. 
■  Maintain set of explored nodes S. 
■  For each unexplored node v, maintain attachment cost key[v] = cost 

of cheapest edge v to a node in S. 
■  O(m log n) with a binary heap implementation. 
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Greedy Algorithms 

 
 
Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T. 
 
 
Kruskal's algorithm.  Start with T = φ. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle. 
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Kruskal's Algorithm (and proof of correctness) 

Kruskal's algorithm.  [Kruskal, 1956] 
Consider edges in ascending order of weight.  (i.e. sort first) 

Case 1:  If adding e to T creates a cycle, discard e. 
               cycle property 
Case 2:  Otherwise, insert e = (u, v) into T. 
              cut property  where S is set of nodes in u’s component. 

Case 1 
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u 

Case 2 

e 

e S 
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Kruskal's Algorithm: Naive Implementation 

Kruskal's algorithm.  [Kruskal, 1956] 
Consider edges in ascending order of weight.   O(m log n) 

Case 1:  If adding e to T creates a cycle, discard e. 
                 O(n)  (e.g. DFS or BFS) 
Case 2:  Otherwise, insert e = (u, v) into T. 
               O(1) 

Case 1 
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Case 2 

e 

e S 
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Kruskal's Algorithm: Better implementation 

Kruskal's algorithm.  [Kruskal, 1956] 
■  Consider edges in ascending order of weight.   O(m log n) 

–  Case 1:  If adding e to T creates a cycle, discard e. 
–  Case 2:  Otherwise, insert e = (u, v) into T. 
 
 

Use Union-Find data structure. 
 
Maintains partition of a set of objects: 

Find(X):  returns name of the group that X belongs to 
Union (Ci, Cj):  Fuses groups Ci and Cj into a single group 
 

To use in Kruskal’s algorithm: 
Objects = vertices 
Groups = connected components of edges in T 
Adding new edge (u,v) to T  == fusing connected components of u,v. 
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Union- Find Basics 

Union-Find data structure: maintains partition of a set of objects 

Find(X):  returns name of the group that X belongs to 

Union (Ci, Cj):  Fuses groups Ci and Cj into a single group 

To use in Kruskal’s algorithm: 

Objects = vertices 

Groups = connected components of edges in T 

Adding new edge (u,v) to T  == fusing connected components of u,v 

 
 

Maintain one linked structure per component (group) of (V, T). 
Each component has arbitrary leader vertex 
Invariant: Each vertex points to the leader of its component. 
 

To check if u and v are in same component: check if Find(u) = Find(v). 
O(1) time. 
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Implementation using Union-Find 

Kruskal's algorithm.  [Kruskal, 1956] 
■  Consider edges in ascending order of weight.   O(m log n) 

–  Case 1:  If adding e to T creates a cycle, discard e. 
–  Case 2:  Otherwise, insert e = (u, v) into T. 
 

Maintain one linked structure per component (group) of (V, T). 

Each component has arbitrary leader vertex 

Invariant:  Each vertex points to the leader of its component. 

 
 
 

When new edge (u,v) added to T, connected components of u and v merge. 
 
How many leader pointer updates needed to maintain invariant in worst 
case? 
 
Theta (n) (e.g., when merging two components of size n/2 each) 
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Implementation using Union-Find 

Maintain one linked structure per component (group) of (V, T). 

Each component has arbitrary leader vertex 

Invariant:  Each vertex points to the leader of its component. 
 
 
 
 

When new edge (u,v) added to T, connected components of u and v merge. 
 
Idea #2:  when two components merge, have smaller one inherit the leader 
of the larger one. (keep track of size of component to implement). 
 
How many leader pointer updates needed to maintain invariant in worst 
case? 
 
Theta (n) (e.g., when merging two components of size n/2 each) 
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Implementation using Union-Find 

Maintain one linked structure per component (group) of (V, T). 

Each component has arbitrary leader vertex 

Invariant:  Each vertex points to the leader of its component. 
 
 
 
Idea #2:  when two components merge, have smaller one inherit the leader 
of the larger one. (keep track of size of component to implement). 
 
How many times does a single vertex v have its leader pointer updated over 
the course of the algorithm? 
 
Theta (log n) 
 
Reason:  Every time v’s leader pointer gets updated, size of its component 
at least doubles. Can only happen log n times. 
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Implementation:  Kruskal's Algorithm 

Kruskal(G, c) { 
   Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm. 
   T ← φ 
 
   foreach (u ∈ V) make a set containing singleton u 
 
   for i = 1 to m 
      (u,v) = ei 
      if (u and v are in different sets) { 
         T ← T ∪ {ei} 
         merge the sets containing u and v 
      } 
   return T 
} 

Implementation.  Use the union-find data structure. 
■  Build set T of edges in the MST. 
■  Maintain set for each connected component. 
■  O(m log n) for sorting and  O(m log n) for union-find. 

are u and v in different connected components? 

merge two components 

m ≤ n2 ⇒ log m is O(log n) 



4.7  Clustering 

Outbreak of cholera deaths  in London in 1850s. 
Reference: Nina Mishra, HP Labs 
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Clustering 

Clustering [aka “unsupervised learning”] .  Given a set U of n objects 
labeled p1, …, pn, classify into coherent groups.  

 
Goal: objects in same cluster similar; objects in different clusters 

dissimilar. 
 
Distance function.  Numeric value specifying "closeness" of two objects. 
 
Fundamental problem.  Divide into clusters so that points in different 

clusters are far apart (i.e., clusters themselves represent points 
that are close, similar) 

 

photos, documents. micro-organisms 
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Clustering of Maximum Spacing 

k-clustering.  Divide objects into k non-empty groups. 
 
Distance function.  Assume it satisfies several natural properties. 
■  d(pi, pj) = 0 iff pi = pj    
■  d(pi, pj) ≥ 0    (nonnegativity) 
■  d(pi, pj) = d(pj, pi)   (symmetry) 

 
Spacing.  Min distance between any pair of points in different clusters. 
 
Clustering of maximum spacing.  Given an integer k, and distance 

function, find a k-clustering of maximum spacing. 

spacing 

k = 4 
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Greedy Clustering Algorithm 

Single-link k-clustering algorithm. 
■  Form a graph on the vertex set U, corresponding to n clusters. 
■  Find the closest pair of objects such that each object is in a 

different cluster, and add an edge between them. 
■  Repeat n-k times until there are exactly k clusters. 

Key observation.  This procedure is precisely Kruskal's algorithm 
(except we stop when there are k connected components). 

Remark.  Equivalent to finding an MST and deleting the k-1 most 
expensive edges. 
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Greedy Clustering Algorithm:  Analysis 

Theorem. Single-link clustering finds the max-spacing k-clustering. 
 
Proof: Let C*1, …, C*k be the greedy clustering; suppose that the spacing 

is S.   Let C1, …, Ck be some other (different) clustering. Need to show 
that spacing of C1, …, Ck  at most S. 

If not the same, then there is a pair of points pi, pj in the same greedy 
cluster (say C*r ), but in different clusters in C1, …, Ck ,  say Cs and Ct. 

■  Since they are in the same cluster in C*, there is a path in the 
(partial) MST between them in C* and every edge on this path has 
length at most S (since edges are added in order of distance). 

■  Some edge (p, q) on pi-pj path in C*r crosses two different clusters in 
C.  

■  Then the spacing between these is ≤ S, 
■  So max spacing of C is ≤ S  ▪ 

p q pi pj 

Cs Ct 

C*r 


