Counting Inversions
Instructor: Anna Karlin

Outline of proof that algorithm for counting inversions is correct:

• Prove by induction on k, that if the algorithm correctly sorts and counts inversions in arrays of length 2^k, then it correctly sorts and counts inversions in arrays of length 2^{k+1}.

• Base case: $k = 0$. An array of length 1 is automatically sorted and has 0 inversions.

• Given an array of length 2^{k+1}, let L represent the left half and R represent the right half. Each of these is an array of length 2^k. By the inductive hypothesis, we can assume that applying our algorithm to these two half arrays yields two sorted subarrays (we will still call them L and R), and correctly computes the inversions internal to each half. Thus, we only need to show that the merge step correctly sorts them (which I will skip – this is merge sort), and that it correctly counts the number of inversions between L and R.

• For the latter, we make the following key claim:
 Consider the point at which the t smallest elements from L and R have been added to the combined array A. Call these elements S_t. Our inductive claim is that during the Merge-And-Count step, we have already counted all $L - R$ inversions that involve at least one element from S_t.

Clearly this is true for $t = 0$. Suppose it is true for some larger t. When the $(t + 1)^{st}$ element, say x, is added to A, then all $L - R$ inversions that involve it and some element of S_t have already been counted by the inductive hypothesis. Let L_t be the left over elements of L (not yet added to A) and let R_t be the leftover elements of R. Thus, we only need to worry about inversions between x and other elements of $L_t \cup R_t$. If $x \in L_t$, then no new inversions involving x are created, since it is smaller than all remaining elements of R_t, and was to the left of them in the array prior to the merge step. If $x \in R_t$, then it is inverted relative to all elements remaining in L_t. But in this case, we add $|L_t|$ to our left-right inversion count. Thus, all inversions including x are included in the total count, and the claim holds for S_{t+1}.