Algorithms

Huffman Codes:
An Optimal Data Compression Method

Slides by Larry Ruzzo

Compression Example

100k file, 6 letter alphabet:

File Size:
ASCII, 8 bits/char: 800kbits
2^7 > 6; 3 bits/char: 300kbits

Why?
Storage, transmission vs computational resources

Data Compression

Binary character code ("code")
each k-bit source string maps to unique code word (e.g. k=8)
"compression" alg: concatenate code words for successive k-bit "strings" of source

Variable length codes
Code words not necessarily of equal length
Prefix codes
no code word is prefix of another (unique decoding)
Prefix Codes = Trees

Greedy Idea #1

Top down: Put most frequent under root, then recurse...

Too greedy: unbalanced tree

\[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34\]

Not too bad, but imagine if all freqs were \(~1/6\):

\[
\frac{1+2+3+4+5+5}{6} = 3.33
\]

Greedy Idea #2

Top down: Divide letters into 2 groups, with \(~50\%) weight in each; recurse

(Shannon-Fano code)

Again, not terrible

\[2 \times 0.5 + 3 \times 0.5 = 2.5\]

But this tree can easily be improved! (How?)
Greedy idea #3

Bottom up: Group least frequent letters near bottom

Huffman’s Algorithm (1952)

Algorithm:
insert node for each letter into priority queue by freq
while queue length > 1 do
 remove smallest 2; call them x, y
 make new node z from them, with f(z) = f(x) + f(y)
 insert z into queue

Analysis: O(n) heap ops: O(n log n)
Goal: Minimize \[B(T) = \sum_{c \in C} \text{freq}(c) \times \text{depth}(c) \]
Correctness: ???
Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy's solution is as good as any.

How: an exchange argument

Defn: A pair of leaves is an inversion if
depth(x) \geq depth(y)
and
freq(x) \geq freq(y)

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

before after
(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =
(d(x) - d(y)) * (f(x) - f(y)) \geq 0

I.e., non-negative cost savings.

Lemma 1:
"Greedy Choice Property"

The 2 least frequent letters might as well be siblings at deepest level
Lemma 1: “Greedy Choice Property”

The 2 least frequent letters might as well be siblings at deepest level.
Let a be least freq, b 2nd
Let u, v be siblings at max depth, \(f(u) \leq f(v) \)
(why must they exist?)
Then (a,u) and (b,v) are inversions. Swap them.

Proof:

\[
B(T) = \sum_{c \in C} d_T(c) \cdot f(c)
\]
\[
B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_T(z) \cdot f'(z)
= (d_T(z) + 1) \cdot f'(z) - d_T(z) \cdot f'(z)
= f'(z)
\]

Suppose \(\hat{T} \) (having x & y as siblings) is better than \(T \), i.e.
\(B(\hat{T}) < B(T) \). Collapse x & y to z, forming \(\hat{T}' \); as above:
\(B(\hat{T}) - B(\hat{T}') = f'(z) \)
Then:
\(B(\hat{T}') = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \)
Contradicting optimality of \(T' \)

Lemma 2

Let \((C, f)\) be a problem instance: \(C \) an n-letter alphabet with letter frequencies \(f(c) \) for \(c \) in \(C \).
For any \(x, y \) in \(C \), let \(C' \) be the (n-1) letter alphabet \(C - \{x,y\} \cup \{z\} \) and for all \(c \) in \(C' \) define
\[
f'(c) = \begin{cases} f(c), & \text{if } c \neq x,y,z \\ f(x) + f(y), & \text{if } c = z \end{cases}
\]

Let \(T' \) be an optimal tree for \((C', f')\). Then
\[T = T' \]
is optimal for \((C, f)\) among all trees having \(x, y \) as siblings.

Theorem: Huffman gives optimal codes

Proof: induction on \(|C|\)
Basis: \(n=2 \) immediate
Induction: \(n>2 \)
Let \(x, y \) be least frequent
Form \(C', f', \& z, \) as above
By induction, \(T' \) is opt for \((C', f')\)
By lemma 2, \(T' \rightarrow T \) is opt for \((C, f)\) among trees with \(x, y \) as siblings
By lemma 1, some opt tree has \(x, y \) as siblings
Therefore, \(T \) is optimal.
Data Compression

Huffman is optimal.
BUT still might do better!
Huffman encodes fixed length blocks. What if we vary them?
Huffman uses one encoding throughout a file. What if characteristics change?
What if data has structure? E.g. raster images, video,…
Huffman is lossless. Necessary?
LZW, MPEG, …