Chapter 6
Dynamic Programming

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Dynamic Programming Applications

Areas.
- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems, ...

Some famous dynamic programming algorithms.
- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context-free grammars.
6.1 Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall: Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation: Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Let's try to understand structure of optimal solution

Case 1: Suppose birdy whispered in your ear that the job with the final finish time was not in the solution
Case 2: Suppose birdy whispered in your ear that the job with the final finish time was in the solution

In each of these cases, what can we say about the optimal solution?
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can’t use incompatible jobs \{ p(j) + 1, p(j) + 2, ..., j - 1 \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 \\
p(1) = 0, p(j) = j-2
\end{array}
\]

Input: n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

For $j = 1$ to n

\[
\begin{align*}
M[0] &= 0 \\
M-Compute-Opt(j) &\text{ } \\
\text{if } M[j] \text{ is empty} &\text{ } \\
M[j] &= \max(v_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) \\
\text{return } M[j]
\end{align*}
\]

Bottom-up dynamic programming. Unwind recursion.

Input: n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

Iterative-Compute-Opt{

\[
\begin{align*}
M[0] &= 0 \\
\text{for } j = 1 \text{ to } n &\text{ } \\
M[j] &= \max(v_j + M[p(j)], M[j-1]) \\
\end{align*}
\]

}
Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.
Def. $p(j)$ is the largest index $i < j$ such that job i is compatible with job j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms compute optimal value. What if we want the solution itself?
A. Do some post-processing.

Find-Solution(j) {
 if ($j = 0$)
 output nothing
 else if ($v_j + M[p(j)] > M[j-1]$)
 print j
 Find-Solution($p(j)$)
 else
 Find-Solution($j-1$)
}

of recursive calls $\leq n \Rightarrow O(n)$.

6.3 Segmented Least Squares

Least squares.
• Foundational problem in statistic and numerical analysis.
• Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
• Find a line $y = ax + b$ that minimizes the sum of the squared error:

\[
SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Solution. Calculus \Rightarrow min error is achieved when

\[
\begin{align*}
a &= \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2} \\
b &= \frac{\sum y_i - a \sum x_i}{n}
\end{align*}
\]
Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n\), find a sequence of lines that minimizes \(f(x)\).

Q. What’s a reasonable choice for \(f(x)\) to balance accuracy and parsimony?

- \[f(x) = \text{goodness of fit} \]
- \[f(x) = \text{number of lines} \]

- Tradeoff function: \(E + cL\), for some constant \(c > 0\).

Dynamic Programming: Multiway Choice

Notation.

- \(OPT(j) = \text{minimum cost for points } p_1, p_{i+1}, \ldots, p_j\).
- \(e(i, j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \ldots, p_j\).

To compute \(OPT(j)\):

- Last segment uses points \(p_i, p_{i+1}, \ldots, p_j\) for some \(i\).
- Cost = \(e(i, j) + c \cdot OPT(i-1)\).

\[
OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \min_{x \in S_x} \{ e(i, j) + c \cdot OPT(i-1) \} & \text{otherwise} \end{cases}
\]

Segmented Least Squares: Algorithm

\[\text{INPUT: } n, p_1, \ldots, p_n, c \]

\[\text{Segmented-Least-Squares()} \{ \]

\[M[0] = 0 \]

\[\text{for } j = 1 \text{ to } n \]

\[\text{for } i = 1 \text{ to } j \]

\[\text{compute the least square error } e_{i, j} \text{ for the segment } p_i, \ldots, p_j \]

\[M[j] = \min_{i \in S_x} \{ e_{i, j} + c \cdot OPT[i-1] \} + M[j-1] \]

\[\text{return } M[n] \}

Running time. \(\mathcal{O}(n^3)\).

- Bottleneck = computing \(e(i, j)\) for \(\mathcal{O}(n^2)\) pairs, \(\mathcal{O}(n)\) per pair using previous formula.
6.4 Knapsack Problem

Knapsack problem.
- Given n objects and a "knapsack."
- Item i weighs \(w_i > 0 \) kilograms and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3, 4\} \) has value 40.

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \(\{ 5, 2, 1 \} \) achieves only value = 35 \(\Rightarrow \) greedy not optimal.

Dynamic Programming: False Start

Def. \(\text{OPT}(i) = \max \text{ profit subset of items } 1, \ldots, i. \)

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{ 1, 2, \ldots, i-1 \} \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - accepting item \(i \) does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before \(i \), we don’t even know if we have enough room for \(i \)

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. \(\text{OPT}(i, w) = \max \text{ profit subset of items } 1, \ldots, i \text{ with weight limit } w. \)

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{ 1, 2, \ldots, i-1 \} \) using weight limit \(w \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(\{ 1, 2, \ldots, i-1 \} \) using this new weight limit

\[
\begin{align*}
\text{OPT}(i, w) &= \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(-1, w) & \text{if } w_i > w \\
\max \{ \text{OPT}(-1, w), v_i + \text{OPT}(-1, w-w_i) \} & \text{otherwise}
\end{cases}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)
Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: \(n, w_1, \ldots, w_n, v_1, \ldots, v_n \)

for \(w = 0 \) to \(W \)
 \(M[0, w] = 0 \)

for \(i = 1 \) to \(n \)
 for \(w = 1 \) to \(W \)
 if \((w_i > w) \)
 \(M[i, w] = M[i-1, w] \)
 else
 \(M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \} \)

return \(M[n, W] \)

Knapsack Problem: Running Time

Running time. \(\Theta(nW) \).
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

6.5 RNA Secondary Structure
RNA Secondary Structure

RNA. String $B = b_1b_2...b_n$ over alphabet \{A, C, G, U\}.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAGCUAGAUCAUGGCGAACAAGUGACGCGAGA

complementary base pairs: A-U, C-G

RNA Secondary Structure

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick pair: $A-U$, $U-A$, $C-G$, or $G-C$.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then $i < j - 4$.
- [Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have $i < k < j < l$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy. Approximate by number of base pairs.

Goal. Given an RNA molecule $B = b_1b_2...b_n$ find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.

RNA Secondary Structure: Subproblems

First attempt. $OPT(j)$ = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_j$.

Difficulty. Results in two subproblems. Finding secondary structure in $b_1b_2...b_{t-1}$: $OPT(t-1)$

Finding secondary structure in $b_{t+1}b_{t+2}...b_n$: need more subproblems
Dynamic Programming Over Intervals

Notation. \(OPT(i, j) \) is maximum number of base pairs in a secondary structure of the substring \(b_i b_{i+1} \ldots b_j \).

- Case 1. If \(i \geq j - 4 \).
 - \(OPT(i, j) = 0 \) by no-sharp turns condition.
- Case 2. Base \(b_j \) is not involved in a pair.
 - \(OPT(i, j) = OPT(i, j-1) \)
- Case 3. Base \(b_j \) pairs with \(b_t \) for some \(i \leq t < j - 4 \).
 - non-crossing constraint decouples resulting sub-problems
 - \(OPT(i, j) = 1 + \max_t \{ OPT(i, t-1) + OPT(t+1, j-1) \} \)

Remark. Some core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA(b_1, \ldots, b_n) {
  for k = 5, 6, \ldots, n-1
    for i = 1, 2, \ldots, n-k
      \{ j = i + k \\
        Compute M[i, j] \\
        \} \\
        return M[1, n] using recurrence
}
```

Running time. \(O(n^3) \).

Dynamic Programming Summary

Recipe.
- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.
- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

6.6 Sequence Alignment
String Similarity

How similar are two strings?
- occurs in at most one pair and no crossings.
- occurs in at most one pair and no crossings.

Example:
- M = x_C T A C G
- Y = y_T A C A T

Def. The pair x_i-y_j and x_{i'}-y_{j'} cross if i < i' but j > j'.

Sequence Alignment

Goal: Given two strings X = x_1 x_2 ... x_n and Y = y_1 y_2 ... y_m find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and x_{i'}-y_{j'} cross if i < i' but j > j'.

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x_1 x_2 ... x_i and y_1 y_2 ... y_j
- Case 1: OPT matches x_i-y_j.
 - pay mismatch for x_i-y_j + min cost of aligning two strings x_1 x_2 ... x_{i-1} and y_1 y_2 ... y_{j-1}.
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning x_1 x_2 ... x_{i-1} and y_1 y_2 ... y_{j-1}.
- Case 2b: OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning x_1 x_2 ... x_i and y_1 y_2 ... y_{j-1}.

Optimal alignment:
- M = x_3 y_2 x_4 y_3 x_5 y_4 x_6 y_6
- Y = y_1 y_2 y_3 y_4 y_5 y_6

Example:
- CTACCG vs. TACATG
- Sol: M = x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 x_5 y_5 x_6 y_6

Edit Distance

Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ, mismatch penalty δ_{mm}.
- Cost = sum of gap and mismatch penalties.

Sequence Alignment

Applications.
- Speech recognition.
- Computational biology.

Sequence Alignment: Problem Structure
Sequence Alignment: Algorithm

Sequence-Alignment(m, n, x_1, x_2, ..., x_m, y_1, y_2, ..., y_n, δ, α) {
 for i = 0 to m
 M[i, 0] = iδ
 for j = 0 to n
 M[0, j] = jδ
 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(α[x_i, y_j] + M[i-1, j-1], δ + M[i-1, j], δ + M[i, j-1])
 return M[m, n]
}

Analysis. Θ(mn) time and space.
English words or sentences: m, n ≤ 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

6.7 Sequence Alignment in Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
- Compute OPT(i, ·) from OPT(i-1, ·).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.
- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.
- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).

Edit distance graph.
Sequence Alignment: Linear Space

Edit distance graph.
- Let \(f(i, j) \) be shortest path from (0,0) to (i, j).
- Can compute \(f(i, j) \) for any \(j \) in \(O(mn) \) time and \(O(m+n) \) space.

Observation 1. The cost of the shortest path that uses \((i, j) \) is \(f(i, j) + g(i, j) \).
Observation 2. Let \(q \) be an index that minimizes \(f(q, n/2) + g(q, n/2) \). Then, the shortest path from \((0, 0)\) to \((m, n)\) uses \((q, n/2)\).

Sequence Alignment: Linear Space

Divide: Find index \(q \) that minimizes \(f(q, n/2) + g(q, n/2) \) using DP.

- Align \(x_q \) and \(y_{n/2} \).

Conquer: Recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let \(T(m, n) = \max \) running time of algorithm on strings of length at most \(m \) and \(n \). \(T(m, n) = O(mn \log n) \).

\[
T(m, n) = 2T(m, n/2) + O(mn) \Rightarrow T(m, n) = O(mn \log n)
\]

Remark. Analysis is not tight because two sub-problems are of size \((q, n/2)\) and \((m - q, n/2)\). In next slide, we save \(\log n \) factor.

Sequence Alignment: Running Time Analysis

Theorem. Let \(T(m, n) = \max \) running time of algorithm on strings of length \(m \) and \(n \). \(T(m, n) = O(mn) \).

Pf. (by induction on \(n \))

- \(O(mn) \) time to compute \(f(\cdot, n/2) \) and \(g(\cdot, n/2) \) and find index \(q \).
- \(T(q, n/2) + T(m - q, n/2) \) time for two recursive calls.
- Choose constant \(c \) so that:
 - Base cases: \(m = 2 \) or \(n = 2 \).
 - Inductive hypothesis: \(T(m, n) \leq 2cnm \).

\[
T(m, n) \leq T(q, n/2) + T(m - q, n/2) + O(mn) \leq 2cnm
\]