6. Dynamic Programming II

- sequence alignment
- Hirschberg’s algorithm
- Bellman-Ford
- distance vector protocols
- negative cycles in a digraph

Shortest paths

Shortest path problem. Given a digraph $G = (V, E)$, with arbitrary edge weights or costs c_{vw}, find cheapest path from node s to node t.

```
source s
      5                  3
       4                  1
         8                12
              7--7--2
         11               9
      13                13
        5--10--6
        10
```

cost of path = $9 - 3 + 1 + 11 = 18$

destination t

Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

```
S         2    W
|         1    |
|           3  |

V         8    W
```

Reweighting. Adding a constant to every edge weight can fail.

```
S         5    1
|         2    |
|           2  |

V         5    6
|         3    |
|           3  |
```

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

```
S         5    W
|         2    |
|           2  |

V         5    1
|         3    |
|           3  |
```

A negative cycle W: $c(W) = \sum_{e \in W} c_e < 0$
Shortest paths and negative cycles

Lemma 1. If some path from \(v \) to \(t \) contains a negative cycle, then there does not exist a cheapest path from \(v \) to \(t \).

Pf. If there exists such a cycle \(W \), then can build a \(v \rightarrow t \) path of arbitrarily negative weight by detouring around cycle as many times as desired. □

\[
W \quad c(W) < 0
\]

\[
\text{v to t}
\]

Lemma 2. If \(G \) has no negative cycles, then there exists a cheapest path from \(v \) to \(t \) that is simple (and has \(\leq n - 1 \) edges).

Pf.
- Consider a cheapest \(v \rightarrow t \) path \(P \) that uses the fewest number of edges.
- If \(P \) contains a cycle \(W \), can remove portion of \(P \) corresponding to \(W \) without increasing the cost. □

\[
W \quad c(W) \geq 0
\]

Shortest paths and negative cycle problems

Shortest path problem. Given a digraph \(G = (V, E) \) with edge weights \(c_{vw} \) and no negative cycles, find cheapest \(v \rightarrow t \) path for each node \(v \).

Negative cycle problem. Given a digraph \(G = (V, E) \) with edge weights \(c_{vw} \), find a negative cycle (if one exists).

\[
\begin{array}{c}
\text{shortest-paths tree} \\
\text{negative cycle}
\end{array}
\]

Shortest paths: dynamic programming

Def. \(OPT(i, v) \) = cost of shortest \(v \rightarrow t \) path that uses \(\leq i \) edges.

- **Case 1:** Cheapest \(v \rightarrow t \) path uses \(\leq i - 1 \) edges.
 - \(OPT(i, v) = OPT(i - 1, v) \)

- **Case 2:** Cheapest \(v \rightarrow t \) path uses exactly \(i \) edges.
 - if \((v, w)\) is first edge, then \(OPT \) uses \((v, w)\), and then selects best \(w \rightarrow t \) path using \(\leq i - 1 \) edges

\[
OPT(i, v) = \begin{cases}
\infty & \text{if } i = 0 \\
\min \left\{ OPT(i - 1, v), \min_{(v, w) \in E} \left\{ OPT(i - 1, w) + c_{w} \right\} \right\} & \text{otherwise}
\end{cases}
\]

Observation. If no negative cycles, \(OPT(n - 1, v) \) = cost of cheapest \(v \rightarrow t \) path.

Pf. By Lemma 2, cheapest \(v \rightarrow t \) path is simple. □
Shortest paths: implementation

Shortest-Paths\((V, E, c, t)\)

FOREACH node \(v \in V\)

\[
M[0, v] \leftarrow \infty.
\]

\[
M[0, t] \leftarrow 0.
\]

FOR \(i = 1\) **TO** \(n - 1\)

FOREACH node \(v \in V\)

\[
M[i, v] \leftarrow M[i-1, v].
\]

FOREACH edge \((v, w) \in E\)

\[
M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \}.
\]

Finding the shortest paths.

- **Approach 1:** Maintain a \(\text{successor}(i, v)\) that points to next node on cheapest \(v \rightarrow t\) path using at most \(i\) edges.
- **Approach 2:** Compute optimal costs \(M[i, v]\) and consider only edges with \(M[i, v] = M[i-1, w] + c_{vw}\).

Bellman-Ford: efficient implementation

Bellman-Ford\((V, E, c, t)\)

FOREACH node \(v \in V\)

\[
d(v) \leftarrow \infty.
\]

\[
\text{successor}(v) \leftarrow \text{null}.
\]

\[
d(t) \leftarrow 0.
\]

FOR \(i = 1\) **TO** \(n - 1\)

FOREACH node \(w \in V\)

IF \((d(w)\) was updated in previous iteration)

FOREACH edge \((v, w) \in E\)

IF \((d(v) > d(w) + c_{vw})\)

\[
d(v) \leftarrow d(w) + c_{vw}.
\]

\[
\text{successor}(v) \leftarrow w.
\]

IF no \(d(w)\) value changed in iteration \(i\), **STOP**.
Bellman-Ford: analysis

Claim. After the i^{th} pass of Bellman-Ford, $d(v)$ equals the cost of the cheapest $v \rightarrow t$ path using at most i edges.

Counterexample. Claim is false!

Consider nodes in order: $t, 1, 2, 3$

<table>
<thead>
<tr>
<th>Node</th>
<th>$d(v)$</th>
<th>$s(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>3</td>
<td>$s(2) = 1$</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
<td>$s(1) = t$</td>
</tr>
<tr>
<td>t</td>
<td>0</td>
<td>$s(3) = t$</td>
</tr>
</tbody>
</table>

Bellman-Ford: analysis

Lemma 3. Throughout Bellman-Ford algorithm, $d(v)$ is the cost of some $v \rightarrow t$ path; after the i^{th} pass, $d(v)$ is no larger than the cost of the cheapest $v \rightarrow t$ path using $\leq i$ edges.

Pf. [by induction on i]

* Assume true after i^{th} pass.
* Let P be any $v \rightarrow t$ path with $i+1$ edges.
* Let (v, w) be the first edge on P and let P' be subpath from w to t.
* By inductive hypothesis, $d(w) \leq c(P')$ since P' is a $w \rightarrow t$ path with i edges.
* After considering v in pass $i+1$: $d(v) \leq c_{vw} + d(w) \leq c_{vw} + c(P') = c(P)$. □

Theorem 2. Given a digraph with no negative cycles, Bellman-Ford computes the costs of the cheapest $v \rightarrow t$ paths in $O(mn)$ time and $\Theta(n)$ extra space.

Pf. Lemmas 2 + 3. □

can be substantially faster in practice
Bellman-Ford: finding the shortest path

Counterexample. Claim is false!

\(\text{Cost of successor } v \rightarrow t \text{ path may have strictly lower cost than } d(v). \)

\(\text{Successor graph may have cycles.} \)

Consider nodes in order: \(t, 1, 2, 3, 4 \)

\[
\begin{align*}
d(1) &= 3 \\
d(2) &= 8 \\
d(3) &= 10 \\
d(4) &= 11 \\
d(t) &= 0
\end{align*}
\]

Bellman-Ford: finding the shortest path

Theorem 3. Given a digraph with no negative cycles, Bellman-Ford finds the cheapest \(s \rightarrow t \) paths in \(O(mn) \) time and \(\Theta(n) \) extra space.

Pf.

- The successor graph cannot have a negative cycle. \([\text{Lemma 4}]\)
- Thus, following the successor pointers from \(s \) yields a directed path to \(t \).
- Let \(s = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = t \) be the nodes along this path \(P \).
- Upon termination, if \(\text{successor}(v) = w \), we must have \(d(v) = d(w) + c_{vw} \).
 \(\text{(LHS and RHS are equal when } \text{successor}(v) \text{ is set; } d(v) \text{ decreases only when } \text{successor}(v) \text{ is reset)} \)
- Let \(v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \) be the nodes along the cycle \(W \).
- Assume that \((v_k, v_1)\) is the last edge added to the successor graph.
- Just prior to that:
 \[
 \begin{align*}
d(v_1) &\geq d(v_2) + c(v_1, v_2) \\
d(v_2) &\geq d(v_1) + c(v_2, v_3) \\
\vdots & \vdots \\
d(v_{k-1}) &\geq d(v_k) + c(v_{k-1}, v_k) \\
d(v_k) &> d(v_{k-1}) + c(v_k, v_1)
 \end{align*}
 \]
- Adding inequalities yields
 \[
 c(v_1, v_2) + c(v_2, v_3) + \ldots + c(v_{k-1}, v_k) + c(v_k, v_1) < 0. \]

W is a negative cycle
6. Dynamic Programming II

- sequence alignment
- Hirschberg’s algorithm
- Bellman-Ford
- distance vector protocols
- negative cycles in a digraph

Distance vector protocols

Distance vector protocols. [*routing by rumor*]
- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs \(n \) separate computations, one for each potential destination node.

Ex. RIP, Xerox XNS RIP, Novell’s IPX RIP, Cisco’s IGRP, DEC’s DNA Phase IV, AppleTalk’s RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

Path vector protocols

Link state routing.
- Each router also stores the entire path.
- Based on Dijkstra’s algorithm.
- Avoids “counting-to-infinity” problem and related difficulties.
- Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
6. Dynamic Programming II

- sequence alignment
- Hirschberg’s algorithm
- Bellman-Ford
- distance vector protocol
- negative cycles in a digraph

Detecting negative cycles

Negative cycle detection problem. Given a digraph $G = (V, E)$, with edge weights c_{vw}, find a negative cycle (if one exists).

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Arbitrage opportunities

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!
Detecting negative cycles

Lemma 5. If $OPT(n, v) = OPT(n-1, v)$ for all v, then no negative cycle can reach t.

Pf. Bellman-Ford algorithm. •

Lemma 6. If $OPT(n, v) < OPT(n-1, v)$ for some node v, then (any) cheapest path from v to t contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]

- Since $OPT(n, v) < OPT(n-1, v)$, we know that shortest $v \rightarrow t$ path P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a $v \rightarrow t$ path with $< n$ edges \Rightarrow W has negative cost. •

Theorem 4. Can find a negative cycle in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.

- Add new node t and connect all nodes to t with 0-cost edge.
- G has a negative cycle iff G' has a negative cycle than can reach t.
- If $OPT(n, v) = OPT(n-1, v)$ for all nodes v, then no negative cycles.
- If not, then extract directed cycle from path from v to t.
 (cycle cannot contain t since no edges leave t) •

Theorem 5. Can find a negative cycle in $O(mn)$ time and $O(n)$ extra space.

Pf.

- Run Bellman-Ford for n passes (instead of $n-1$) on modified digraph.
- If no $d(v)$ values updated in pass n, then no negative cycles.
- Otherwise, suppose $d(s)$ updated in pass n.
- Define $pass(v) = \text{last pass in which } d(v) \text{ was updated}$.
- Observe $pass(s) = n$ and $pass(\text{successor}(v)) \geq pass(v) - 1$ for each v.
- Following successor pointers, we must eventually repeat a node.
- Lemma 4 \Rightarrow this cycle is a negative cycle. •

Remark. See p. 304 for improved version and early termination rule.

(Tarjan’s subtree disassembly trick)