Asymptotic Analysis of Algorithms

In a nutshell:

- Suppresses constant factors (that are system dependent)
- Suppresses lower order terms (that are irrelevant for large inputs)

Asymptotic Order of Growth

Upper bounds (Big Oh). \(T(n) = O(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \) we have \(T(n) \leq c \cdot f(n) \).

Lower bounds (Big Omega). \(T(n) = \Omega(f(n)) \) if there exist constants \(c > 0 \) and \(n_0 \geq 0 \) such that for all \(n \geq n_0 \) we have \(T(n) \geq c \cdot f(n) \).

Tight bounds (Theta). \(T(n) = \Theta(f(n)) \) if \(T(n) \) is both \(O(f(n)) \) and \(\Omega(f(n)) \).

Little oh. \(T(n) = o(f(n)) \) if for all constants \(c > 0 \) there is \(n_0 \geq 0 \) such that for all \(n \geq n_0 \) we have \(T(n) \leq c \cdot f(n) \).

Ex: \(T(n) = 32n^2 + 17n + 32 \).
- \(T(n) \) is \(O(n^2) \), \(O(n^3) \), \(o(n^3) \), \(\Omega(n^2) \), \(\Omega(n) \), and \(\Theta(n^2) \).
- \(T(n) \) is not \(O(n) \), \(o(n^2) \), \(\Omega(n^3) \), \(\theta(n) \), or \(\Theta(n^3) \).