6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs *compatible* if they don't overlap.
- Goal: find maximum *weight* subset of mutually compatible jobs.

How?
- Divide & Conquer?
- Greedy?
Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Exercises: by “density” = weight per unit time? Other ideas?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.
Def. $p(j) = $ largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

<table>
<thead>
<tr>
<th>j</th>
<th>p(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Dynamic Programming: Binary Choice

Notation. $OPT(j)$ = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- **Case 1**: Optimum selects job j.
 - can’t use incompatible jobs { $p(j) + 1$, $p(j) + 2$, ..., $j - 1$ }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $p(j)$

- **Case 2**: Optimum does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $j-1$

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + OPT(p(j)), \ OPT(j - 1) \right\} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

```plaintext
Compute-Opt(j) {
   if (j = 0) 
      return 0 
   else 
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1)) 
}
```
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems ⇒ exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = 0, \ p(j) = j-2
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

Iterative-Compute-Opt {
 \begin{align*}
 \text{OPT}[0] &= 0 \\
 \text{for } j &= 1 \text{ to } n \\
 \quad \text{OPT}[j] &= \max(v_j + \text{OPT}[p(j)], \text{OPT}[j-1])
 \end{align*}
}

Output $\text{OPT}[n]$

Claim: $\text{OPT}[j]$ is value of optimal solution for jobs $1..j$

Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$; what about $p(j)$?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0 \).
Weighted Interval Scheduling Example

Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\(p(j) = \text{largest } i < j \text{ s.t. job } i \text{ is compatible with } j. \)

Exercise: try other concrete examples:
If all \(v_j = 1 \): greedy by finish time \(\rightarrow 1,4,8 \)
what if \(v_2 > v_1 \) ?, but \(< v_1 + v_4 \) ?
v2 > v1 + v4, but \(v_2 + v_6 < v_1 + v_7 \), say? etc.

<table>
<thead>
<tr>
<th>j</th>
<th>pj</th>
<th>vj</th>
<th>(\text{max}(v_j + \text{opt}[p(j)], \text{opt}[j-1]) = \text{opt}[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>(\text{max}(2+0, \ 0) = \ 2)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>(\text{max}(3+0, \ 2) = \ 3)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>(\text{max}(1+0, \ 3) = \ 3)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>(\text{max}(6+2, \ 3) = \ 8)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>9</td>
<td>(\text{max}(9+0, \ 8) = \ 9)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>(\text{max}(7+3, \ 9) = \ 10)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>(\text{max}(2+3, \ 10) = \ 10)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>?</td>
<td>(\text{max}(?+9, \ 10) = \ ?)</td>
</tr>
</tbody>
</table>

Exercise: What values of \(v_8 \) cause it to be in/excluded from \(\text{opt} \)?
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing - “traceback”

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (v_j + OPT[p(j)] > OPT[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

- # of recursive calls ≤ n ⇒ O(n).
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the 2^n possible subsets might be relevant)

Don’t believe me? Think about the analogous problem for weighted *rectangles* instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.
6.4 Knapsack Problem
Knapsack Problem

Knapsack problem.

- Given n objects and a “knapsack.”
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3, 4\}$ has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
<th>V/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
<td>3.60</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
<td>3.66</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

$W = 11$

Greedy: repeatedly add item with maximum ratio v_i / w_i.

Ex: $\{5, 2, 1\}$ achieves only value = 35 \Rightarrow greedy not optimal.

[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]
Dynamic Programming: False Start

Def. \(\text{OPT}(i) = \text{max profit subset of items } 1, \ldots, i. \)

- **Case 1:** \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{ 1, 2, \ldots, i-1 \} \)

- **Case 2:** \(\text{OPT} \) selects item \(i \).
 - accepting item \(i \) does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before \(i \), we don't even know if we have enough room for \(i \)

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. \(OPT(i, w) = \) max profit subset of items 1, ..., \(i \) with weight limit \(w \).

- **Case 1:** \(OPT \) does not select item \(i \).
 - \(OPT \) selects best of \{ 1, 2, ..., \(i-1 \) \} using weight limit \(w \)

- **Case 2:** \(OPT \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(OPT \) selects best of \{ 1, 2, ..., \(i-1 \) \} using this new weight limit

\[
OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i - 1, w) & \text{if } w_i > w \\
\max\{ OPT(i - 1, w), \ v_i + OPT(i - 1, w - w_i) \} & \text{otherwise}
\end{cases}
\]
Knapsack Problem: Bottom-Up

\[\text{OPT}(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w. \]

\begin{verbatim}
Input: n, w_1, \ldots, w_N, v_1, \ldots, v_N

for w = 0 to W
 OPT[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (w_i > w)
 OPT[i, w] = OPT[i-1, w]
 else
 OPT[i, w] = max \{OPT[i-1, w], v_i + OPT[i-1, w-w_i]\}

return OPT[n, W]
\end{verbatim}

(Correctness: prove it by induction on i & w.)
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Optimal Solution

\[
\text{OPT: \{4, 3\}} \quad \text{value} = 22 + 18 = 40
\]

\[
\text{if } (w_i > w) \\
\text{OPT}[i, w] = \text{OPT}[i-1, w] \\
\text{else} \\
\text{OPT}[i, w] = \max\{\text{OPT}[i-1, w], v_i + \text{OPT}[i-1, w - w_i]\}
\]
Knapsack Problem: Running Time

Running time. $\Theta(nW)$.
- *Not* polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]