CSE 417: Algorithms and Computational Complexity

W. L. Ruzzo

Dynamic Programming, I:
Fibonacci & Stamps
Dynamic Programming

Outline:

General Principles

Easy Examples – Fibonacci, Licking Stamps

Meatier examples

Weighted interval scheduling

String Alignment

RNA Structure prediction

Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search

Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution.

Useful when the same sub-problems show up repeatedly in the solution.

Often very robust to problem re-definition.

Sometimes gives exponential speedups.
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

0 1 1 2 3 5 8 13 21 34 55 89 144 233 ...

Recursive algorithm:

\[
\text{Fibo}(n) \\
\text{if } n = 0 \text{ then return}(0) \\
\text{else if } n = 1 \text{ then return}(1) \\
\text{else return}(\text{Fibo}(n-1)+\text{Fibo}(n-2))
\]

Note:

Exponential $\uparrow: F(n) \approx \Phi^n/\sqrt{5}$, $\Phi = (1+\sqrt{5})/2 \approx 1.618...$
Call tree - start
Full call tree

many duplicates ⇒ exponential time!

\[F(n) \approx \Phi^n / \sqrt{5} \]
Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don’t re-compute:
 Save answers from all recursive calls
 Before a call, test whether answer saved

Dynamic Programming (not memoized)

Pre-compute, don’t re-compute:
 Recursion become iteration (top-down → bottom-up)
 Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs
Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i > 1
F[0] ← 0
F[1] ← 1
FiboMemo(n):
 if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
 }
 return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):

\[
\begin{align*}
F[0] & \leftarrow 0 \\
F[1] & \leftarrow 1 \\
\text{for } i = 2 \text{ to } n \text{ do} \\
F[i] & \leftarrow F[i-1] + F[i-2] \\
\text{end} \\
\text{return}(F[n])
\end{align*}
\]

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*

Parameters of these recursive calls *anticipated*

The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” — more below
Example: Making change

Given:
 Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
 An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
 Give as many as possible of the next biggest denomination
Licking Stamps

Given:

- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N
A Few Ways To Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

for $a = 0, \ldots, N$
 for $b = 0, \ldots, N$
 for $c = 0, \ldots, N$
 if $(5a+4b+c == N && a+b+c$ is new min)
 { retain $(a,b,c);$}
 output retained triple;

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp in an opt sol has value v, then previous stamps are opt sol for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v.

Alg: for $i = 1$ to n:

$$\text{OPT}(i) = \min \begin{cases}
0 & i=0 \\
1+\text{OPT}(i-5) & i\geq 5 \\
1+\text{OPT}(i-4) & i\geq 4 \\
1+\text{OPT}(i-1) & i\geq 1
\end{cases}$$

Claim: $\text{OPT}(i) =$ min number of stamps totaling $i\notin$

Pf: induction on i.

New Idea: Recursion

\[
OPT(i) = \min \begin{cases}
0 & i = 0 \\
1 + OPT(i-5) & i \geq 5 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-1) & i \geq 1
\end{cases}
\]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

for $i = 0, \ldots, N$ do

$$OPT(i) = \min \left\{ \begin{array}{ll}
 0 & i = 0 \\
 1 + OPT(i-5) & i \geq 5 \\
 1 + OPT(i-4) & i \geq 4 \\
 1 + OPT(i-1) & i \geq 1 \\
\end{array} \right. $$

Time: $O(N)$
Finding *How Many* Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3, 1, 3) = 2

Goal
Finding *Which* Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \min(3, 1, 3) = 2 \]
Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

`TraceBack(i):`
if `i == 0` then return;
for `d` in `{1, 4, 5}` do
 if `OPT[i] == 1 + OPT[i - d]`
 then break;
print `d`;
`TraceBack(i - d)`;

\[
OPT(i) = \min \left\{
\begin{array}{ll}
0 & i=0 \\
1+OPT(i-5) & i\geq5 \\
1+OPT(i-4) & i\geq4 \\
1+OPT(i-1) & i\geq1 \\
\end{array}
\right.
\]
Complexity Note

$O(N)$ is better than $O(N^3)$ or $O(3^{N/5})$

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – $c \cdot 2^{64}$ steps & 2^{64} memory.)

Note: can do in $O(1)$ for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general (i.e., when denominations and total are both part of the input). See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways