http://courses.cs.washington.edu/417

CSE 417, Sp '14: Algorithms & Computational Complexity

Lecture: EEB 037 (schematic) MWF 12:30-1:20

Instructor: Larry Ruzzo, ruzzo@cs tba
TAs: Yanling He, hey@cs tba
Jianghong Shi, jsh@cs tba
Tianhui Shi, tianhui@cs tba

Course Email: cse417a_sp14@uw.edu. Staff announcements and general course information will be sent to this list. Enrolled students are subscribed automatically.

Discussion Board: Also feel free to join the discussion board.

Catalog Description: Design and analysis of algorithms for manipulating graphs and strings. Fast Fourier Transform and applications. Analysis of time and space complexity. NP-complete problems and approximation algorithms.

Exams: Midterm, Final. Homework will be a mix of paper & pencil exercises and programming. Overall weights 55%, 15%, roughly.

Late Policy: Papers and/or electronic turnins are due at the start of class on the due date. 10% off for up to one day late (business day, e.g., Monday for Friday due dates); additional 20% per day thereafter.

Textbooks: Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U Book Store, Amazon, etc.)
What you’ll have to do

Homework (~55% of grade)
 Programming
 Several small projects
 Written homework assignments
 English exposition and pseudo-code
 Analysis and argument as well as design

Midterm / Final Exam (~15% / 30%)

Late Policy:
 Papers and/or electronic turnins are due at the start of class on the due date. 10% off for one day late (Monday, for Friday due dates); 20% per day thereafter.
Textbook

What the course is about

Design of Algorithms
 design methods
 common or important types of problems
 analysis of algorithms - efficiency
 correctness proofs
What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough
algorithms must be efficient

some problems have no efficient solution

NP-complete problems

important & useful class of problems whose solutions (seemingly) cannot be found efficiently, but can be checked easily
Very Rough Division of Time

Algorithms (7 weeks)
 Analysis of Algorithms
 Basic Algorithmic Design Techniques
 Graph Algorithms

Complexity & NP-completeness (3 weeks)

Check online schedule page for (evolving) details
Complexity Example

Cryptography (e.g., RSA, SSL in browsers)

Secret: \(p, q \) prime, say 512 bits each
Public: \(n \) which equals \(p \times q \), 1024 bits

In principle

there is an algorithm that given \(n \) will find \(p \) and \(q \):
try all \(2^{512} > 1.3 \times 10^{154} \) possible \(p \)'s: kinda slow…

In practice

no fast algorithm known for this problem (on non-quantum computers)
security of RSA depends on this fact
(“quantum computing”: strongly driven by possibility of changing this)
Algorithms versus Machines

We all know about Moore’s Law and the exponential improvements in hardware...

Ex: sparse linear equations over 25 years

10 orders of magnitude improvement!
Algorithms or Hardware?

25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

Source: Sandia, via M. Schultz
Algorithms or Hardware?

25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

software: 6 orders of magnitude

Source: Sandia, via M. Schultz
The N-Body Problem:

in 30 years

10^7 hardware

10^{10} software
Algorithm: definition

Procedure to accomplish a task or solve a well-specified problem

Well-specified: know what all possible inputs look like and what output looks like given them “accomplish” via simple, well-defined steps

Ex: sorting names (via comparison)

Ex: checking for primality (via +, -, *, /, \(\leq\))
Goals

Correctness
 often subtle

Analysis
 often subtle

Generality, Simplicity, ‘Elegance’

Efficiency
 time, memory, network bandwidth, …
Algorithms: a sample problem

Printed circuit-board company has a robot arm that solders components to the board.

Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position.

For each board design, find best order to do the soldering.
Printed Circuit Board
Printed Circuit Board
A Well-defined Problem

Input: Given a set S of n points in the plane
Output: The shortest cycle tour that visits each point in the set S once.

Better known as “TSP”

How might you solve it?
Nearest Neighbor Heuristic

Start at some point p_0
Walk first to its nearest neighbor p_1
Repeatedly walk to the nearest unvisited neighbor p_2, then p_3,... until all points have been visited
Then walk back to p_0

heuristic:
A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood. May be good, but usually *not* guaranteed to give the best or fastest solution.
Nearest Neighbor Heuristic
An input where NN works badly

length ~ 84
An input where NN works badly

optimal soln for this example
length = 63.8
Revised idea - Closest pairs first

Repeatedly join the closest pair of points (s.t. result can still be part of a single loop in the end. I.e., join endpoints, but not points in middle, of path segments already created.)

How does this work on our bad example?
Another bad example

1.5 1.5

1
Another bad example

\[6 + \sqrt{10} = 9.16 \]

vs

8
Something that works

“Brute Force Search”: For each of the $n! = n(n-1)(n-2)\ldots 1$ orderings of the points, check the length of the cycle you get
Keep the best one
Two Notes

The two incorrect algorithms were greedy

- Often very natural & tempting ideas
- They make choices that look great “locally” (and never reconsider them)
- When greed works, the algorithms are typically efficient
- BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

- 20! is so large that checking one billion orderings per second would take 2.4 billion seconds (around 70 years!)
- And growing: \(n! \approx \sqrt{2\pi n} \cdot (n/e)^n \approx 2^{O(n \log n)} \)
The Morals of the Story

Algorithms are important
 Many performance gains outstrip Moore’s law
Simple problems can be hard
 Factoring, TSP
Simple ideas don’t always work
 Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow
 Brute-force factoring, TSP
For some problems, even the best algorithms are slow
Course Goals:
 formalize these ideas, and
develop more sophisticated approaches