Sample Exercises on Recurrences

In this handout, we give few examples of recurrences and how to solve them. We start by stating Master's theorem:

Theorem 1 (Master's Theorem) . Let a and b be positive constants and let $T(n)=$ $a T(n / b)+c n^{k}$ for $n>b$ then

- if $a>b^{k}$ then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
- if $a<b^{k}$ then $T(n)$ is $\Theta\left(n^{k}\right)$
- if $a=b^{k}$ then $T(n)$ is $\Theta\left(n^{k} \log n\right)$

Master's theorem works even if we are using $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.

Exercises

Solve the following recurrence to get the best asymptotic bounds you can on $T(n)$ in each case using O() notation.

1. $T(n)=T\left(\frac{n}{4 \log _{2} n}\right)+2 n$ for $n>1$ and $T(1)=1$. You can assume that all numbers is rounded down to the nearest integer.
Solution We will provide an upper and a lower bound to show that the best asymptotic bound for the recurrence is $\Theta(n)$. A lower bound of $\Omega(n)$ follows from the $2 n$ term in $T(n)$.
An upper bound can be reached by observing that $4 \log n>4$ for $n>1$, so $T\left(\frac{n}{4(\log n)}\right) \leq$ $T\left(\frac{n}{4}\right)$ and we have

$$
T(n) \leq T\left(\frac{n}{4}\right)+2 n
$$

which, by Master's theorem, is $O(n)$. It follows that $T(n) \in \Theta(n)$.
2. BFPRT algorithm for median finding: $T(n) \leq c n+T\left(\frac{n}{5}\right)+T\left(\frac{3 n}{4}\right)$ and $T(1)=1$, where $c \geq 1$. You can assume that everything is rounded down to the nearest integer.
Solution We prove by induction on n that $T(n) \leq 20 c n=O(n)$.
(a) Base case: $T(1)=1 \leq 20 c$, done.
(b) Inductive hypothesis: Let $k \geq 2$. Assume $T(i) \leq 20 c i$ for all $i \leq k-1$.
(c) Inductive step: We prove the statement true for k.

$$
\begin{aligned}
T(k) & \leq c k+T\left(\frac{k}{5}\right)+T\left(\frac{3 k}{4}\right) \\
& \leq c k+20 c \frac{k}{5}+20 c \frac{3 k}{4} \\
& =c k\left(1+20\left(\frac{19}{20}\right)\right) \\
& =c k(1+19) \\
& =20 c k
\end{aligned}
$$

Notice that although we have two subproblems here, we have an $O(n)$ running time since the size of the two subproblems combined is strictly less than n.
3. Polynomial Multiplication: $T(n)=3 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n$ and $T(1)=4$.

Solution Since $3>2^{1}$, by the Master's theorem, we have $T(n)=\Theta\left(n^{\log _{2} 3}\right)$.
4. Matrix Multiplication: $T(n)=7 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n^{2}$ and $T(1)=1$.

Solution Since $7>2^{2}$, by the Master's theorem, we have $T(n)=\Theta\left(n^{\log _{2} 7}\right)$.
5. $T(n) \leq T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+c n \log n$, for $n \geq 4$ and $T(2)=2$.

Solution We prove the by induction on n that $\left.T(n) \leq c n \log ^{2} n\right)=O\left(n \log ^{2} n\right)$
(a) Base case: $T(2)=2$ and $2 \log ^{2} 2=2$, done.
(b) Inductive hypothesis: Let $k \geq 2$. Assume $T(i) \leq c i \log ^{2} i$ for all $i \leq k-1$.
(c) Inductive step: We prove the statement true for k.

$$
\begin{align*}
T(k) & \leq T\left(\left\lceil\frac{k}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+c k \log k \tag{1}\\
& \leq c\left(\left\lceil\frac{k}{2}\right\rceil \log ^{2}\left\lceil\frac{k}{2}\right\rceil\right)+c\left(\left\lfloor\frac{k}{2}\right\rfloor \log ^{2}\left\lfloor\frac{k}{2}\right\rfloor\right)+c k \log k \tag{2}\\
& \leq c\left(\left\lceil\frac{k}{2}\right\rceil \log ^{2}\left\lceil\frac{k}{2}\right\rceil\right)+c\left(\left\lfloor\frac{k}{2}\right\rfloor \log ^{2}\left\lceil\frac{k}{2}\right\rceil\right)+c k \log k \tag{3}\\
& =c k\left(\log ^{2}\left\lceil\frac{k}{2}\right\rceil\right)+c k \log k \tag{4}\\
& \leq c k \log k \log \left\lceil\frac{k}{2}\right\rceil+c k \log k \tag{5}\\
& \leq c k \log k(\log k-1)+c k \log k \tag{6}\\
& =c k \log ^{2} k \tag{7}
\end{align*}
$$

where (3) follows from the fact that $\left\lfloor\frac{k}{2}\right\rfloor \leq\left\lceil\frac{k}{2}\right\rceil$, (4) from the fact that $\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil=k$ and (6) from the fact that $\log \left\lceil\frac{k}{2}\right\rceil \leq \log k-1$.

