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Guessing Game: NP-Complete?

1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple 

path of length at least k edges?

YES

2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple 

path of length at most k edges?

In P

3. 2-SAT: Give a formula Φ such that each clause has at most 2 literals, is 

Φ is satisfiable?

In P

4. 3-COLOR: Given a graph G = (V, E), can we color the nodes of G with 3 

colors such that no two nodes joined by an edge have the same coloring

YES

5. Factoring: Give an integer N. Find the factors of N.

INAPPLICABLE
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Coping With NP-Completeness

Q.  Suppose I need to solve an NP-complete problem. What should I do?

A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in polynomial time.

� Solve arbitrary instances of the problem.

This lecture.  Solve some special cases of NP-complete problems that 

arise in practice.
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10.1  Finding Small Vertex Covers



3/7/2012

Copyright 2000, Kevin Wayne 5

5

Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v) 
either u ∈ S, or v ∈ S, or both.
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k = 4
S = { 3, 6, 7, 10 }
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Finding Small Vertex Covers

Q.  What if k is small?

Brute force.  O(k nk+1).

� Try all C(n, k) = O(nk) subsets of size k.

� Takes O(k n) time to check whether a subset is a vertex cover.

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).

Ex.  n = 1,000, k = 10.

Brute. k nk+1  = 1034  ⇒ infeasible.

Better.  2k k n = 107    ⇒ feasible.

Remark.  If k is a constant, algorithm is poly-time; if k is a small 

constant, then it's also practical.
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Finding Small Vertex Covers

Claim.  Let u-v be an edge of G.  G has a vertex cover of size ≤ k iff

at least one of G − { u } and G − { v } has a vertex cover of size ≤ k-1.

Pf.  ⇒

� Suppose G has a vertex cover S of size ≤ k.

� S contains either u or v (or both).  Assume it contains u.

� S − { u } is a vertex cover of G − { u }.

Pf.  ⇐

� Suppose S is a vertex cover of G − { u } of size ≤ k-1.

� Then S ∪ { u } is a vertex cover of G.  ▪

Claim.  If G has a vertex cover of size k, it has ≤ k(n-1) edges.

Pf.  Each vertex covers at most n-1 edges.  ▪

delete v and all incident edges
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Finding Small Vertex Covers:  Algorithm

Claim. The following algorithm determines if G has a vertex cover of 

size ≤ k in O(2k kn) time.

Pf.

� Correctness follows previous two claims.

� There are ≤ 2k+1 nodes in the recursion tree; each invocation takes 

O(kn) time.  ▪

boolean Vertex-Cover(G, k) {

if (G contains no edges)   return true

if (G contains ≥≥≥≥ kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1)

return a or b

}
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Finding Small Vertex Covers:  Recursion Tree
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10.2  Solving NP-Hard Problems on Trees
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Independent Set on Trees

Independent set on trees.  Given a tree, find a maximum cardinality 

subset of nodes such that no two share an edge.

Fact.  A tree on at least two nodes has

at least two leaf nodes.

Key observation.  If v is a leaf, there exists

a maximum size independent set containing v.

Pf.  (exchange argument)

� Consider a max cardinality independent set S.

� If v ∈ S, we're done.

� If u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum.

� IF u ∈ S and v ∉ S, then S ∪ { v } − { u } is independent.  ▪

v

u

degree = 1
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Independent Set on Trees:  Greedy Algorithm

Theorem.  The following greedy algorithm finds a maximum cardinality 

independent set in forests (and hence trees).

Pf.  Correctness follows from the previous key observation.  ▪

Remark.  Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {

S ←←←← φφφφ
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges

incident to them.

}

return S

}
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Chapter 11

Approximation
Algorithms
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Approximation Algorithms

Q.  Suppose I need to solve an NP-hard problem. What should I do?

A.  Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in poly-time.

� Solve arbitrary instances of the problem.

ρ-approximation algorithm.

� Guaranteed to run in poly-time.

� Guaranteed to solve arbitrary instance of the problem

� Guaranteed to find solution within ratio ρ of true optimum.

Challenge.  Need to prove a solution's value is close to optimum, without 

even knowing what optimum value is!
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11.4  The Pricing Method:  Vertex Cover
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Weighted Vertex Cover

Weighted vertex cover.  Given a graph G with vertex weights, find a 
vertex cover of minimum weight.
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weight = 2 + 2 + 4 weight = 9
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Weighted Vertex Cover

Pricing method.  Each edge must be covered by some vertex i.  Edge e 
pays price pe ≥ 0 to use vertex i.

Fairness.  Edges incident to vertex i should pay ≤ wi in total.

Claim.  For any vertex cover S and any fair prices pe:  ∑e pe  ≤ w(S). 

Proof.  ▪
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Pricing Method

Pricing method.  Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {

foreach e in E

pe = 0

while (∃ edge i-j such that neither i nor j are tight)

select such an edge e

increase pe without violating fairness

}

S ←←←← set of all tight nodes

return S

}

i
jie
e wp =∑

= ),(
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Pricing Method

vertex weight

Figure 11.8

price of edge a-b
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Pricing Method:  Analysis

Theorem.  Pricing method is a 2-approximation.
Pf.  

� Algorithm terminates since at least one new node becomes tight 
after each iteration of while loop.

� Let S = set of all tight nodes upon termination of algorithm. S is a 
vertex cover:  if some edge i-j is uncovered, then neither i nor j is 
tight. But then while loop would not terminate.

� Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

w(S) = wi
i∈ S
∑ =

i∈ S
∑ pe

e=(i, j)
∑ ≤

i∈V
∑ pe

e=(i, j)
∑ = 2 pe

e∈ E
∑ ≤ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice
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13.4  MAX 3-SAT
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Maximum 3-Satisfiability

MAX-3SAT.  Given 3-SAT formula, find a truth assignment that 

satisfies as many clauses as possible.

Remark.  NP-hard search problem.

Simple idea.  Flip a coin, and set each variable true with probability ½, 

independently for each variable.

C1 = x2 ∨ x3 ∨ x4

C2 = x2 ∨ x3 ∨ x4

C3 = x1 ∨ x2 ∨ x4

C4 = x1 ∨ x2 ∨ x3

C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause
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Claim. Given a 3-SAT formula with k clauses, the expected number of 

clauses satisfied by a random assignment is 7k/8.

Pf.  Consider random variable 

� Let Z = weight of clauses satisfied by assignment Zj.

E[Z] = E[Z j
j=1

k

∑ ] 

= Pr[clause C j  is satisfied
j=1

k

∑ ]

= 7
8
k

Maximum 3-Satisfiability:  Analysis

Z j =
1 if clause C j  is satisfied

0 otherwise.

 
 
 

linearity of expectation
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Corollary. For any instance of 3-SAT, there exists a truth assignment 

that satisfies at least a 7/8 fraction of all clauses.

Pf.  Random variable is at least its expectation some of the time.   ▪

Probabilistic method. We showed the existence of a non-obvious 

property of 3-SAT by showing that a random construction produces 

it with positive probability!

The Probabilistic Method
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Maximum 3-Satisfiability:  Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?  In 

general, a random variable can almost always be below its mean.

Lemma.  The probability that a random assignment satisfies ≥ 7k/8 

clauses is at least 1/(8k).

Pf.  Let pj be probability that exactly j clauses are satisfied; let p be 

probability that ≥ 7k/8 clauses are satisfied.

Rearranging terms yields  p ≥ 1 / (8k).    ▪

7
8
k  =  E[Z ] = j p j

j≥0
∑

= j p j   +  j p j
j≥7k /8

∑
j<7k /8

∑

≤ ( 7k
8

− 1
8
) p j   +   k p j

j≥7k /8
∑

j<7k /8
∑

≤ ( 7
8
k − 1

8
)  ⋅  1   +   k p
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Maximum 3-Satisfiability:  Analysis

Johnson's algorithm.  Repeatedly generate random truth assignments 

until one of them satisfies ≥ 7k/8 clauses.

Theorem.  Johnson's algorithm is a 7/8-approximation algorithm.

Pf.  By previous lemma, each iteration succeeds with probability at 

least 1/(8k).  By the waiting-time bound, the expected number of 

trials to find the satisfying assignment is at most 8k.   ▪

Waiting for a first success.  Coin is heads with probability p and tails 

with probability 1-p.  How many independent flips X until first 

heads?

E[X ] = j ⋅ Pr[X = j]
j=0

∞
∑ = j (1− p) j−1 p

j=0

∞
∑ =

p

1− p
j (1− p) j

j=0

∞
∑ =

p

1− p
⋅
1− p
p2

=
1

p

j-1 tails 1 head
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Maximum Satisfiability

Extensions.

� Allow one, two, or more literals per clause.

� Find max weighted set of satisfied clauses.

Theorem.  [Asano-Williamson 2000] There exists a 0.784-

approximation algorithm for MAX-SAT.

Theorem.  [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 

7/8-approximation algorithm for version of MAX-3SAT where each 

clause has at most 3 literals.

Theorem.  [Håstad 1997] Unless P = NP, no ρ-approximation algorithm 

for MAX-3SAT (and hence MAX-SAT) for any ρ > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT
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What to do if the  problem you want 

to solve is NP-hard

� More on approximation algorithms
� Recent research has classified problems based on what 

kinds of approximations are possible if P≠≠≠≠NP

� Best: (1+εεεε) factor for any εεεε>0.
� packing and some scheduling problems, TSP in plane

� Some fixed constant factor > 1, e.g. 2, 3/2, 100
� Vertex Cover, TSP in space, other scheduling problems 

� ΘΘΘΘ(log n) factor
� Set Cover, Graph Partitioning problems

� Worst: ΩΩΩΩ(n1-εεεε) factor for any εεεε>0
� Clique, Independent-Set, Coloring

Slides courtesy of Paul Beame
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What to do if the  problem you want 

to solve is NP-hard

� Try an algorithm that is provably fast “on 

average”.

� To even try this one needs a model of what a 

typical instance is.

� Typically, people consider “random graphs”

� e.g. all graphs with a given # of edges are 

equally likely

� Problems:

� real data doesn’t look like the random graphs

� distributions of real data aren’t analyzable

Slides courtesy of Paul Beame
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What to do if the  problem you want 

to solve is NP-hard

� Try to search the space of possible hints/certificates in a more efficient 

way and hope it is quick enough

� Backtracking search 

� E.g. For SAT there are 2n possible truth assignments

� If we set the truth values one-by-one we might be able to figure out 

whole parts of the space to avoid, 

� e.g.  After setting x1←←←←1, x2←←←←0 we don’t even need to set x3 or x4 to 

know that it won’t satisfy

(¬¬¬¬x1 ∨∨∨∨ x2) ∧∧∧∧ (¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ ¬¬¬¬x3) ∧∧∧∧ (x1 ∨∨∨∨ ¬¬¬¬x4)

� Related technique: branch-and-bound

� Backtracking search can be very effective even with exponential 

worst-case time

� For example, the best SAT algorithms used in practice are all variants 

on backtracking search and can solve surprisingly large problems

Slides courtesy of Paul Beame
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What to do if the  problem you want 

to solve is NP-hard

� Use heuristic algorithms and hope they 

give good answers

� No guarantees of quality

� Many different types of heuristic algorithms

� Many different options, especially for 

optimization problems, such as TSP, 

where we want the best solution.

� We’ll mention several on following slides

Slides courtesy of Paul Beame



3/7/2012

Copyright 2000, Kevin Wayne 32

32

Heuristic algorithms for

NP-hard problems

� local search for optimization problems

� need a notion of two solutions being 
neighbors

� Start at an arbitrary solution S

� While there is a neighbor T of S that is 
better than S

�S←T

� Usually fast but often gets stuck in a local 
optimum and misses the global optimum
� With some notions of neighbor can take a long 

time in the worst case

Slides courtesy of Paul Beame



3/7/2012

Copyright 2000, Kevin Wayne 33

33

e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors 

iff there is a pair of edges you can

swap to transform one to the other

Slides courtesy of Paul Beame
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Heuristic algorithms for 

NP-hard problems

� randomized local search

� start local search several times from random starting points and take 

the best answer found from each point

� more expensive than plain local search but usually much 

better answers

� simulated annealing

� like local search but at each step sometimes move to a worse neighbor 

with some probability

� probability of going to a worse neighbor is set to decrease with time 

as, presumably, solution is closer to optimal

� helps avoid getting stuck in a local optimum but often slow to 

converge (much more expensive than randomized local search)

� analogy with slow cooling to get to lowest energy state in a crystal 

(or in forging a metal)

Slides courtesy of Paul Beame
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Heuristic algorithms

� artificial neural networks

� based on very elementary model of human neurons

� Set up a circuit of artificial neurons

� each artificial neuron is an analog circuit gate whose 

computation depends on a set of connection strengths

� Train the circuit

� Adjust the connection strengths of the neurons by giving 

many positive & negative training examples and seeing if 

it behaves correctly

� The network is now ready to use

� useful for ill-defined classification problems such as optical 

character recognition but not typical cut & dried problems

Slides courtesy of Paul Beame
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Other directions

� Quantum computing

� Use physical processes at the quantum level to implement 

“weird” kinds of circuit gates

� unitary transformations

� Quantum objects can be in a superposition of many pure states 

at once

� can have n objects together in a superposition of 2n states

� Each quantum circuit gate operates on the whole superposition 

of states at once

� inherent parallelism but classical randomized algorithms have a 

similar parallelism: not enough on its own

� Advantage over classical: parallel copies interfere with each 

other.

� Need totally new kinds of algorithms to work well. Theoretically able to 

factor efficiently but huge practical problems: errors, decoherence.  

Slides courtesy of Paul Beame
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Loose Ends

Space Complexity:

� Amount of memory used by an algorithm

� If an algorithm runs in time T, then it uses at most T units of 

memory

� Every poly-time algorithm uses poly-space

� If an algorithm uses S units of memory, it run in time O(2�	)

PSPACE: class of algorithms solvable by algorithms that use a 

polynomial amount of space.

P ⊆ PSPACE

Another big question in complexity is whether  P = PSPACE.
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