
3/7/2012

Copyright 2000, Kevin Wayne 1

1

Guessing Game: NP-Complete?

1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple

path of length at least k edges?

YES

2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

path of length at most k edges?

In P

3. 2-SAT: Give a formula Φ such that each clause has at most 2 literals, is

Φ is satisfiable?

In P

4. 3-COLOR: Given a graph G = (V, E), can we color the nodes of G with 3

colors such that no two nodes joined by an edge have the same coloring

YES

5. Factoring: Give an integer N. Find the factors of N.

INAPPLICABLE

3/7/2012

Copyright 2000, Kevin Wayne 2

2

Chapter 10

Extending the Limits
of Tractability

Reading: 10.1-10.2

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

3/7/2012

Copyright 2000, Kevin Wayne 3

3

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in polynomial time.

� Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that

arise in practice.

3/7/2012

Copyright 2000, Kevin Wayne 4

10.1 Finding Small Vertex Covers

3/7/2012

Copyright 2000, Kevin Wayne 5

5

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v)
either u ∈ S, or v ∈ S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

3/7/2012

Copyright 2000, Kevin Wayne 6

6

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).

� Try all C(n, k) = O(nk) subsets of size k.

� Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.

Brute. k nk+1 = 1034 ⇒ infeasible.

Better. 2k k n = 107 ⇒ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small

constant, then it's also practical.

3/7/2012

Copyright 2000, Kevin Wayne 7

7

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size ≤ k iff

at least one of G − { u } and G − { v } has a vertex cover of size ≤ k-1.

Pf. ⇒

� Suppose G has a vertex cover S of size ≤ k.

� S contains either u or v (or both). Assume it contains u.

� S − { u } is a vertex cover of G − { u }.

Pf. ⇐

� Suppose S is a vertex cover of G − { u } of size ≤ k-1.

� Then S ∪ { u } is a vertex cover of G. ▪

Claim. If G has a vertex cover of size k, it has ≤ k(n-1) edges.

Pf. Each vertex covers at most n-1 edges. ▪

delete v and all incident edges

3/7/2012

Copyright 2000, Kevin Wayne 8

8

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of

size ≤ k in O(2k kn) time.

Pf.

� Correctness follows previous two claims.

� There are ≤ 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. ▪

boolean Vertex-Cover(G, k) {

if (G contains no edges) return true

if (G contains ≥≥≥≥ kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1)

return a or b

}

3/7/2012

Copyright 2000, Kevin Wayne 9

9

Finding Small Vertex Covers: Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT

kcn
knT k2),(

 1if)1,(2

 1if
),(≤⇒

>+−

=
≤

3/7/2012

Copyright 2000, Kevin Wayne 10

10.2 Solving NP-Hard Problems on Trees

3/7/2012

Copyright 2000, Kevin Wayne 11

11

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality

subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has

at least two leaf nodes.

Key observation. If v is a leaf, there exists

a maximum size independent set containing v.

Pf. (exchange argument)

� Consider a max cardinality independent set S.

� If v ∈ S, we're done.

� If u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum.

� IF u ∈ S and v ∉ S, then S ∪ { v } − { u } is independent. ▪

v

u

degree = 1

3/7/2012

Copyright 2000, Kevin Wayne 12

12

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality

independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. ▪

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {

S ←←←← φφφφ
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a leaf

Add v to S

Delete from F nodes u and v, and all edges

incident to them.

}

return S

}

3/7/2012

Copyright 2000, Kevin Wayne 13

13

Chapter 11

Approximation
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

3/7/2012

Copyright 2000, Kevin Wayne 14

14

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

� Solve problem to optimality.

� Solve problem in poly-time.

� Solve arbitrary instances of the problem.

ρ-approximation algorithm.

� Guaranteed to run in poly-time.

� Guaranteed to solve arbitrary instance of the problem

� Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without

even knowing what optimum value is!

3/7/2012

Copyright 2000, Kevin Wayne 15

11.4 The Pricing Method: Vertex Cover

3/7/2012

Copyright 2000, Kevin Wayne 16

16

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 9

3/7/2012

Copyright 2000, Kevin Wayne 17

17

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e
pays price pe ≥ 0 to use vertex i.

Fairness. Edges incident to vertex i should pay ≤ wi in total.

Claim. For any vertex cover S and any fair prices pe: ∑e pe ≤ w(S).

Proof. ▪

4

9

2

2

i
jie
e wpi ≤∑

=),(

:x each vertefor

).(
),(

Swwpp
Si

i
jie
e

SiEe
e =≤≤ ∑∑∑∑

∈=∈∈

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S

3/7/2012

Copyright 2000, Kevin Wayne 18

18

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {

foreach e in E

pe = 0

while (∃ edge i-j such that neither i nor j are tight)

select such an edge e

increase pe without violating fairness

}

S ←←←← set of all tight nodes

return S

}

i
jie
e wp =∑

=),(

3/7/2012

Copyright 2000, Kevin Wayne 19

19

Pricing Method

vertex weight

Figure 11.8

price of edge a-b

3/7/2012

Copyright 2000, Kevin Wayne 20

20

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

� Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

� Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

� Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

w(S) = wi
i∈ S
∑ =

i∈ S
∑ pe

e=(i, j)
∑ ≤

i∈V
∑ pe

e=(i, j)
∑ = 2 pe

e∈ E
∑ ≤ 2w(S*).

all nodes in S are tight S ⊆ V,
prices ≥ 0

fairness lemmaeach edge counted twice

3/7/2012

Copyright 2000, Kevin Wayne 21

13.4 MAX 3-SAT

3/7/2012

Copyright 2000, Kevin Wayne 22

22

Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that

satisfies as many clauses as possible.

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ½,

independently for each variable.

C1 = x2 ∨ x3 ∨ x4

C2 = x2 ∨ x3 ∨ x4

C3 = x1 ∨ x2 ∨ x4

C4 = x1 ∨ x2 ∨ x3

C5 = x1 ∨ x2 ∨ x4

exactly 3 distinct literals per clause

3/7/2012

Copyright 2000, Kevin Wayne 23

23

Claim. Given a 3-SAT formula with k clauses, the expected number of

clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable

� Let Z = weight of clauses satisfied by assignment Zj.

E[Z] = E[Z j
j=1

k

∑]

= Pr[clause C j is satisfied
j=1

k

∑]

= 7
8
k

Maximum 3-Satisfiability: Analysis

Z j =
1 if clause C j is satisfied

0 otherwise.

linearity of expectation

3/7/2012

Copyright 2000, Kevin Wayne 24

24

Corollary. For any instance of 3-SAT, there exists a truth assignment

that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. We showed the existence of a non-obvious

property of 3-SAT by showing that a random construction produces

it with positive probability!

The Probabilistic Method

3/7/2012

Copyright 2000, Kevin Wayne 25

25

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In

general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies ≥ 7k/8

clauses is at least 1/(8k).

Pf. Let pj be probability that exactly j clauses are satisfied; let p be

probability that ≥ 7k/8 clauses are satisfied.

Rearranging terms yields p ≥ 1 / (8k). ▪

7
8
k = E[Z] = j p j

j≥0
∑

= j p j + j p j
j≥7k /8

∑
j<7k /8

∑

≤ (7k
8

− 1
8
) p j + k p j

j≥7k /8
∑

j<7k /8
∑

≤ (7
8
k − 1

8
) ⋅ 1 + k p

3/7/2012

Copyright 2000, Kevin Wayne 26

26

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments

until one of them satisfies ≥ 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at

least 1/(8k). By the waiting-time bound, the expected number of

trials to find the satisfying assignment is at most 8k. ▪

Waiting for a first success. Coin is heads with probability p and tails

with probability 1-p. How many independent flips X until first

heads?

E[X] = j ⋅ Pr[X = j]
j=0

∞
∑ = j (1− p) j−1 p

j=0

∞
∑ =

p

1− p
j (1− p) j

j=0

∞
∑ =

p

1− p
⋅
1− p
p2

=
1

p

j-1 tails 1 head

3/7/2012

Copyright 2000, Kevin Wayne 27

27

Maximum Satisfiability

Extensions.

� Allow one, two, or more literals per clause.

� Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-

approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a

7/8-approximation algorithm for version of MAX-3SAT where each

clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ-approximation algorithm

for MAX-3SAT (and hence MAX-SAT) for any ρ > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

3/7/2012

Copyright 2000, Kevin Wayne 28

28

What to do if the problem you want

to solve is NP-hard

� More on approximation algorithms
� Recent research has classified problems based on what

kinds of approximations are possible if P≠≠≠≠NP

� Best: (1+εεεε) factor for any εεεε>0.
� packing and some scheduling problems, TSP in plane

� Some fixed constant factor > 1, e.g. 2, 3/2, 100
� Vertex Cover, TSP in space, other scheduling problems

� ΘΘΘΘ(log n) factor
� Set Cover, Graph Partitioning problems

� Worst: ΩΩΩΩ(n1-εεεε) factor for any εεεε>0
� Clique, Independent-Set, Coloring

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 29

29

What to do if the problem you want

to solve is NP-hard

� Try an algorithm that is provably fast “on

average”.

� To even try this one needs a model of what a

typical instance is.

� Typically, people consider “random graphs”

� e.g. all graphs with a given # of edges are

equally likely

� Problems:

� real data doesn’t look like the random graphs

� distributions of real data aren’t analyzable

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 30

30

What to do if the problem you want

to solve is NP-hard

� Try to search the space of possible hints/certificates in a more efficient

way and hope it is quick enough

� Backtracking search

� E.g. For SAT there are 2n possible truth assignments

� If we set the truth values one-by-one we might be able to figure out

whole parts of the space to avoid,

� e.g. After setting x1←←←←1, x2←←←←0 we don’t even need to set x3 or x4 to

know that it won’t satisfy

(¬¬¬¬x1 ∨∨∨∨ x2) ∧∧∧∧ (¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ ¬¬¬¬x3) ∧∧∧∧ (x1 ∨∨∨∨ ¬¬¬¬x4)

� Related technique: branch-and-bound

� Backtracking search can be very effective even with exponential

worst-case time

� For example, the best SAT algorithms used in practice are all variants

on backtracking search and can solve surprisingly large problems

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 31

31

What to do if the problem you want

to solve is NP-hard

� Use heuristic algorithms and hope they

give good answers

� No guarantees of quality

� Many different types of heuristic algorithms

� Many different options, especially for

optimization problems, such as TSP,

where we want the best solution.

� We’ll mention several on following slides

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 32

32

Heuristic algorithms for

NP-hard problems

� local search for optimization problems

� need a notion of two solutions being
neighbors

� Start at an arbitrary solution S

� While there is a neighbor T of S that is
better than S

�S←T

� Usually fast but often gets stuck in a local
optimum and misses the global optimum
� With some notions of neighbor can take a long

time in the worst case

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 33

33

e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors

iff there is a pair of edges you can

swap to transform one to the other

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 34

34

Heuristic algorithms for

NP-hard problems

� randomized local search

� start local search several times from random starting points and take

the best answer found from each point

� more expensive than plain local search but usually much

better answers

� simulated annealing

� like local search but at each step sometimes move to a worse neighbor

with some probability

� probability of going to a worse neighbor is set to decrease with time

as, presumably, solution is closer to optimal

� helps avoid getting stuck in a local optimum but often slow to

converge (much more expensive than randomized local search)

� analogy with slow cooling to get to lowest energy state in a crystal

(or in forging a metal)

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 35

35

Heuristic algorithms

� artificial neural networks

� based on very elementary model of human neurons

� Set up a circuit of artificial neurons

� each artificial neuron is an analog circuit gate whose

computation depends on a set of connection strengths

� Train the circuit

� Adjust the connection strengths of the neurons by giving

many positive & negative training examples and seeing if

it behaves correctly

� The network is now ready to use

� useful for ill-defined classification problems such as optical

character recognition but not typical cut & dried problems

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 36

36

Other directions

� Quantum computing

� Use physical processes at the quantum level to implement

“weird” kinds of circuit gates

� unitary transformations

� Quantum objects can be in a superposition of many pure states

at once

� can have n objects together in a superposition of 2n states

� Each quantum circuit gate operates on the whole superposition

of states at once

� inherent parallelism but classical randomized algorithms have a

similar parallelism: not enough on its own

� Advantage over classical: parallel copies interfere with each

other.

� Need totally new kinds of algorithms to work well. Theoretically able to

factor efficiently but huge practical problems: errors, decoherence.

Slides courtesy of Paul Beame

3/7/2012

Copyright 2000, Kevin Wayne 37

Loose Ends

Space Complexity:

� Amount of memory used by an algorithm

� If an algorithm runs in time T, then it uses at most T units of

memory

� Every poly-time algorithm uses poly-space

� If an algorithm uses S units of memory, it run in time O(2�)

PSPACE: class of algorithms solvable by algorithms that use a

polynomial amount of space.

P ⊆ PSPACE

Another big question in complexity is whether P = PSPACE.

37

