Guessing Game: NP-Complete?

1. LONGEST-PATH: Given a graph $G=(V, E)$, does there exists a simple path of length at least k edges?

YES

2. SHORTEST-PATH: Given a graph $G=(V, E)$, does there exists a simple path of length at most k edges?

In P
3. 2-SAT: Give a formula Φ such that each clause has at most 2 literals, is Φ is satisfiable?

In P
4. 3-COLOR: Given a graph $G=(V, E)$, can we color the nodes of G with 3 colors such that no two nodes joined by an edge have the same coloring YES
5. Factoring: Give an integer N. Find the factors of N.

INAPPLICABLE

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.
10.1 Finding Small Vertex Covers

Must sacrifice one of three desired features

- Solve problem to optimality.
- Solve problem in polynomial time.
. Solve arbitrary instances of the problem

This lecture. Solve some special cases of NP-complete problems that arise in practice.

Vertex Cover

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both

$\mathrm{k}=4$
$S=\{3,6,7,10\}$

Finding Small Vertex Covers

Q. What if k is small?

Brute force. $O\left(k n^{k+1}\right)$

- Try all $C(n, k)=O\left(n^{k}\right)$ subsets of size k.
- Takes $O(k n)$ time to check whether a subset is a vertex cover

Goal. Limit exponential dependency on k, e.g., to $O\left(2^{k} k n\right)$.

Ex. $n=1,000, k=10$
Brute. $k n^{k+1}=10^{34} \Rightarrow$ infeasible
Better. $2^{k} k n=10^{7} \Rightarrow$ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a smal constant, then it's also practical

Finding Small Vertex Covers

Claim. Let $u-v$ be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G-\{u\}$ and $G-\{v\}$ has a vertex cover of size $\leq k-1$.

Pf. \Rightarrow
delete v and all incident edges

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u orv (or both). Assume it contains u.
- $S-\{u\}$ is a vertex cover of $G-\{u\}$

Pf. \Leftarrow

- Suppose S is a vertex cover of $G-\{u\}$ of size $\leq k-1$
- Then $S \cup\{u\}$ is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has $\leq k(n-1)$ edges.
Pf. Each vertex covers at most $n-1$ edges. -

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O\left(2^{k} k n\right)$ time.

```
boolean Vertex-Cover (G, k)
```

 return true
 (G contains \(\geq \mathrm{kn}\) edges) return fals
 et (\(u, v\)) be any edge of
 \(\mathrm{a}=\) Vertex-Cover \((\mathrm{G}-\{\mathrm{u}\}, \mathrm{k}-1\)
 return a or b
 \}

Pf.

- Correctness follows previous two claims
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation take O(kn) time. -

10.2 Solving NP-Hard Problems on Trees

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge

Fact. A tree on at least two nodes has at least two leaf nodes.

1 degree =1
Key observation. If v is a leaf, there exists a maximum size independent set containing v

Pf. (exchange argument)

- Consider a max cardinality independent set S.
- If $v \in S$, we're done.

If $u \notin S$ and $v \notin S$, then $S \cup\{v\}$ is independent $\Rightarrow S$ not maximum
Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
    s}\leftarrow
        Shile (F has at least one edge)
            Let e= = at least one edge)
            Let e=(u,
            Delete from F nodes u and v, and all edges
                incident to them.
    }
        return S
}
```

Pf. Correctness follows from the previous key observation. -
Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features

- Solve problem to optimality
. Solve problem in poly-time
. Solve arbitrary instances of the problem.
ρ-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

11.4 The Pricing Method: Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_{e} \geq 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_{i}$ in total.
for each vertex $i: \sum_{e=(i, j)} p_{e} \leq w_{i}$

Claim. For any vertex cover S and any fair prices $p_{e}: \Sigma_{e} p_{e} \leq w(S)$. Proof.

$$
\underset{\substack{\sum_{e \in E} \\
\begin{array}{l}
\text { each edge e covered by by } \\
\text { at least one node in } S
\end{array}}}{\substack{\text { sum fairness inequalities } \\
\text { for each node in } S}}
$$

-

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously

Weighted-Vertex-Cover-Approx (G, w)
foreach e in E
reach e
$\mathrm{Pe}=0$

w) $\{$

$\sum_{e=(i, j)} p_{e}=$
while (\exists edge i-j such that neither i nor j are tight) select such an edge e
increase p_{e} without violating fairness
\}
$\mathrm{S} \leftarrow$ set of all tight nodes
return S
\}

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge $i-j$ is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^{*} be optimal vertex cover. We show $w(S) \leq 2 w\left(S^{*}\right)$.
$w(S)=\sum_{i \in S} w_{i}=\sum_{i \in S} \sum_{e=(i, j)} p_{e} \leq \sum_{i \in V} \sum_{e=(i, j)} p_{e}=2 \sum_{e \in E} p_{e} \leq 2 w\left(S^{*}\right) . \quad$.
$\dagger^{i \in S} \begin{aligned} & e=(i, j) \\ & \dagger^{i \in V}{ }_{e=(i, j)} \uparrow^{e \in E} \downarrow\end{aligned}$
all nodes in S are tight $\underset{\substack{S \subset V \\ \text { prices } \geq 0}}{\underset{\sim}{s}}$ each edge counted twice \quad fairness lemma
13.4 MAX 3-SAT
Maximum 3-Satisfiability: Analysis
Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 \mathrm{k} / 8$.
Pf. Consider random variable $Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$
. Let $Z=$ weight of clauses satisfied by assignment Z_{j}.

$$
E[Z]=\sum_{j=1}^{k} E\left[Z_{j}\right]
$$

linearity of expectation $=\sum_{j=1}^{k} \operatorname{Pr}\left[\right.$ clause C_{j} is satisfied $]$

$$
=\frac{7}{8} k
$$

Maximum 3-Satisfiability

$$
\text { exactly } 3 \text { distinct literals per clause }
$$

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee \vee x_{3}
\end{aligned}
$$

$$
C_{5}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}
$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$ independently for each variable.

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. -

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a $7 / 8$-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7 \mathrm{k} / 8$ clauses is at least $1 /(8 \mathrm{k})$.

Pf. Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 \mathrm{k} / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z] & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j \geq 7 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 k / 8} p_{j}+k \sum_{j \geq 7 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1 /(8 k)$. .

Maximum Satisfiability

Extensions

- Allow one, two, or more literals per clause.
. Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals

Theorem. [Håstad 1997] Unless $P=N P$, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho>7 / 8$.

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 \mathrm{k} / 8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at least $1 /(8 k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8 k . "

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?
$E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{\infty} j(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=0}^{\infty} j(1-p)^{j}=\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}$ $j-1$ tails 1 head

What to do if the problem you want to solve is NP-hard

- More on approximation algorithms
- Recent research has classified problems based on what kinds of approximations are possible if $\mathrm{P} \neq \mathrm{NP}$
- Best: $(1+\varepsilon)$ factor for any $\varepsilon>0$.
- packing and some scheduling problems, TSP in plane
. Some fixed constant factor > 1, e.g. 2, 3/2, 100
- Vertex Cover, TSP in space, other scheduling problems
$\Theta(\log \mathrm{n})$ factor
- Set Cover, Graph Partitioning problems
- Worst: $\boldsymbol{\Omega}\left(\mathbf{n}^{1-\varepsilon}\right)$ factor for any $\varepsilon>0$
- Clique, Independent-Set, Coloring

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast "on average".
- To even try this one needs a model of what a typical instance is.
- Typically, people consider "random graphs"
e.g. all graphs with a given \# of edges are equally likely
- Problems:
- real data doesn't look like the random graphs
- distributions of real data aren't analyzable

What to do if the problem you want

 to solve is NP-hard- Use heuristic algorithms and hope they give good answers
- No guarantees of quality
- Many different types of heuristic algorithms
- Many different options, especially for optimization problems, such as TSP, where we want the best solution.
- We'll mention several on following slides

What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints/certificates in a more efficient way and hope it is quick enough
- Backtracking search
- E.g. For SAT there are 2^{n} possible truth assignments
- If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
- e.g. After setting $\mathbf{x}_{1} \leftarrow 1, x_{2} \leftarrow 0$ we don't even need to set x_{3} or x_{4} to
know that it won't satisfy

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{4}\right)
$$

- Related technique: branch-and-bound
- Backtracking search can be very effective even with exponential worst-case time
- For example, the best SAT algorithms used in practice are all variants on backtracking search and can solve surprisingly large problems
\qquad

Heuristic algorithms for

 NP-hard problems- local search for optimization problems
- need a notion of two solutions being neighbors
- Start at an arbitrary solution S
- While there is a neighbor \mathbf{T} of \mathbf{S} that is better than \mathbf{S}

$$
\mathbf{S} \leftarrow \mathbf{T}
$$

- Usually fast but often gets stuck in a local optimum and misses the global optimum
- With some notions of neighbor can take a long time in the worst case
e.g., Neighboring solutions for TSP

Solution S

Solution T

Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other

Heuristic algorithms

- artificial neural networks

- based on very elementary model of human neurons
- Set up a circuit of artificial neurons
- each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
- Train the circuit
- Adjust the connection strengths of the neurons by giving many positive \& negative training examples and seeing if it behaves correctly
- The network is now ready to use
- useful for ill-defined classification problems such as optica character recognition but not typical cut \& dried problems

Heuristic algorithms for
 NP-hard problems

- randomized local search
- start local search several times from random starting points and take the best answer found from each point
- more expensive than plain local search but usually much better answers
- simulated annealing
- like local search but at each step sometimes move to a worse neighbor with some probability
- probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
- helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
- analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)
Slides courtesy of Paul Beame 34

Other directions

- Quantum computing
- Use physical processes at the quantum level to implement "weird" kinds of circuit gates
- unitary transformations
- Quantum objects can be in a superposition of many pure states at once
- can have n objects together in a superposition of $\mathbf{2}^{\mathbf{n}}$ states
- Each quantum circuit gate operates on the whole superposition of states at once
- inherent parallelism but classical randomized algorithms have a similar parallelism: not enough on its own
- Advantage over classical: parallel copies interfere with each other.
- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.
Loose Ends
Space Complexity:
- Amount of memory used by an algorithm
- If an algorithm runs in time T, then it uses at most T units of
memory
- Every poly-time algorithm uses poly-space
- If an algorithm uses S units of memory, it run in time $\mathrm{O}\left(2^{s}\right)$
PSPACE: class of algorithms solvable by algorithms that use a
polynomial amount of space.

\[\)| Another big question in complexity is whether $P=\text { PSPACE. }$ |
| :--- |

\]

