
CSE 417, Winter 2012���
���

P, NP, and Intractability	


Ben Birnbaum	

Widad Machmouchi	


1	


Slides adapted from Larry 
Ruzzo and Kevin Wayne !



2 

The Simpson's:  P = NP? 

Copyright © 1990, Matt Groening 



3 

Looking for a Job? 

Some writers for the Simpsons and Futurama. 
  J. Steward Burns.  M.S. in mathematics, Berkeley, 1993. 
  David X. Cohen.  M.S. in computer science, Berkeley, 1992. 
  Al Jean.  B.S. in mathematics, Harvard, 1981. 
  Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990. 
  Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989. 



What can we feasibly compute?	


Focus so far in the course has been to give 
good algorithms for specific problems (and 
general techniques that help do this).	


	

Now shifting focus to problems where we 
think this is impossible.	


4	




Overview	


Researchers found many problems with obvious 
exponential solutions, but no polynomial time algorithm 
known.	


Eventually, researchers gave up and started trying to prove 
that it was impossible to solve these problems efficiently.	


Didn’t quite succeed here either.	

However, they did develop a beautiful theory that allows 

us to show that many problems “probably” can’t be 
solved efficiently.	


5	


Theory of NP-Completeness	




Our goals	


1.  Explain how this theory works.	

2.  Show how to use it to prove a problem is 

“probably” not solvable in polynomial 
time.	


This is the most theoretical part of the 
course, but it is very important.	


6	




7	


Polynomial versus exponential	


Polynomial	

	

	

Bigger than polynomial	

	

	




8	


22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	


 	




9	


Complexity Increase E.g. T=1012 

O(n) n0 à 2n0 1012 2  x 1012 

O(n2) n0 à √2 n0 106         1.4  x 106 

O(n3) n0 à 3√2 n0 104 1.25  x 104 

2n /10 n0 à n0+10 400 410 
2n n0 à n0 +1 40 41 

Another view of Poly vs Exp	


Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	

	




Polynomial versus exponential	


Of course there are exceptions:	

n100 is bigger than (1.001)n for most practical values of n 
but usually such run-times don’t show up	

There are algorithms that have run-times like O(2sqrt(n)/22)  
and these may be useful for small input sizes, but they're 
not too common either	


	


10	




11	


Decision problems	


Computational complexity usually analyzed using 
decision problems: answer just YES or NO (1 or 0) 	

	


Example: “Find the minimum spanning tree” è 
“Is there a spanning tree of size ≤ k?”	

	


Why?	

Much simpler to deal with	

Deciding whether G has a k-clique is certainly no harder than 
finding a k-clique in G or finding the size of the maximum k-
clique.  So proving decision problem is hard is a strong result.	

Less important, but if you have a good decider, you can often 
use it to get a good finder.  	




12	


Some Decision Problems	


Independent-Set: 	

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that ���
no two vertices in U are joined by an edge.	


	


Clique: 	

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an edge.	




13	


"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer 
k, does G contain a k-clique?	


"Problem Instance" – the specific cases	

Ex: Does                     contain a 4-clique? This is a “NO 
instance”	

	

Ex: Does                     contain a 3-clique? This is a “YES 
instance”	


Some Terminology	




14	


The class P	


Definition: P = set of (decision) problems solvable 
by computers in polynomial time.  i.e.,	


	
T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable 
problems.	

	

Examples: shortest path, MST, connectivity, interval 
scheduling, dynamic programming – most of this 
quarter	

	




15	


Beyond P?	


There are many natural, practical problems for 
which we don’t know any polynomial-time 
algorithms	




16	


Some Examples	


Independent-Set: 	

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that ���
no two vertices in U are joined by an edge.	


	


Clique: 	

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an edge.	




Some Examples	


17	


Vertex-Cover: 	

Given a graph G=(V,E) and an integer k, is 
there a subset U of V with |U| ≤ k such that 
every edge touches a vertex in U. 	


	


	




Some Examples	


18	


Hamiltonian Cycle:	

Given a graph G = (V, E), is there a cycle that 
visits each node exactly once?	

	




Some Examples	


19	


Hamiltonian Cycle:	

Given a graph G = (V, E), is there a cycle that 
visits each node exactly once?	

	


YES	
 NO	




Some Examples	


Traveling Salesperson Problem: 	

Given a weighted graph G=(V,E,w) and an integer k, is 
there a Hamiltonian cycle with total weight ≤ k?	

	


	


20	




21 

Traveling Salesperson Problem 

  TSP. Given a weighted graph G=(V,E,w) and an integer k, is there a 
Hamiltonian cycle with total weight ≤ k?	


 
 

All 13,509 cities in US with a population of at least 500 
Reference:  http://www.tsp.gatech.edu 



22 

Traveling Salesperson Problem 

  TSP. Given a weighted graph G=(V,E,w) and an integer k, is there a 
Hamiltonian cycle with total weight ≤ k?	


 
 

Optimal TSP tour 
Reference:  http://www.tsp.gatech.edu 



23	


Satisfiability – Boolean Formulas	


Boolean variables x1, ..., xn	

taking values in {0,1}.  0=false, 1=true	


Literals	

xi or ¬xi for i = 1, ..., n	


Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	


CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	




24	


Satisfiability	


CNF formula example	

(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4)	


If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable	


the one above is, the following isn’t	


x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���
	


Satisfiability:  Given a CNF formula F, is it satisfiable?	




25	


Satisfiable?	

(	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	


(	
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 ¬z	
 )	


(	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	


(	
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 ¬z	
 )	




26	


History – As of 1970	


Many of the above problems had been 
studied for decades.	

All had real, practical applications.	

None were known to be in P.  Exponential 
algorithms were the best known.	

	

It turns out they all have a very deep 
similarity under the skin.  They all belong to a 
class of problems called NP.	




NP: problems with ���
efficient verifiers	


Verification algorithm intuition:	

Verifier views things from "managerial" viewpoint.	

Verifier doesn't determine whether a problem 
instance is YES on its own. 	


Rather, it checks a proposed proof (certificate) that 
an instance is YES.	

	


NP stands for nondeterministic polynomial time	

	


27	




28	


The complexity class NP	


NP consists of all decision problems where 	

	


You can verify the YES answers efficiently (in polynomial 
time) given a short (polynomial-size) certificate	


	


And	

	


No certificate can fool your polynomial time verifier into 
saying YES for a NO instance	

	




29	


Precise Definition of NP	


A decision problem is in NP iff there is a 
polynomial time procedure v(-,-), and an 
integer k such that 	


for every YES problem instance x there is a 
certificate h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every NO problem instance x there is no 
certificate h with |h| ≤ |x|k such that v(x,h) = YES	




30	


Example: CLIQUE is in NP	


procedure v(x,h)	

if 	

	
x represents a graph G and h represents a set of	

	
vertices U.	


and 	

	
there is an edge in G between each pair of	

	
vertices in U	


then output YES	

else output NOT CONVINCED	




31	


Is it correct?	


For every x = (G,k) such that G contains a k-clique, 
there is a certificate h that will cause v(x,h) to say 
YES, namely h = a list of the vertices in such a k-
clique	


and	

No certificate can fool v into saying yes if either x 
isn't well-formed (the uninteresting case) or if x = 
(G,k) but G does not have any cliques of size k (the 
interesting case)	




32	


Another example: SAT ∈ NP	


Certificate: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	


Syntax: True iff  F is a well-formed formula & A is a 
truth-assignment to its variables	


Satisfies: plug A into F and evaluate	


Correctness:	

If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it	


If F is unsatisfiable, it doesn’t, and we won’t be fooled	




33	


Keys to showing  that ���
a problem is in NP	


What's the output?  (must be YES/NO)	

First, describe the certificate and verifier.	


Second, for every YES instance, show that 
there is a certificate that would cause the 
verifier to output YES in polynomial time.	

Third, for every NO instance, show that there 
is no certificate that would cause the verifier to 
output YES, i.e. the verifier can’t be tricked.	




Another Example: ���
Hamiltonian Cycle ∈ NP	


Certificate: a list of the vertices in the cycle	

Verifier: check that inputs are well-formed, that 

there is an edge between each of the vertices in 
certificate, and that every vertex appears exactly 
once.	


Correctness: ���
If YES instance: then there is a certificate 
corresponding to a Hamiltonian cycle, and verifier 
outputs YES in polynomial time. ���
If NO instance: no certificate will fool the verifier.	


	

	


34	




Are all problems in NP?	


No, think about Tautology: given a boolean 
formula, decide whether it is always true.	

	

Not clear what a certificate would look like.	

How would one efficiently show (or check) 

that all assignments evaluate to true?	


35	




Review	


•  Described move from optimization to 
decision problems	


•  Described complexity class P	

•  Described complexity class NP	

•  Showed that a bunch of problems are in 

NP	

•  Next up: NP – who cares?	

•  In the book: 8.3 -> 8.1 -> 8.2 -> 8.4	


36	




P vs. NP	


If a problem is in P, then we can construct a 
verifier that ignores the certificate and just 
solves the problem.	


This verifier satisfies our requirements for 
being in NP.	


Thus,	


37	


P ⊆ NP



Example: Graph Connectivity	


Graph-Connectivity: Is graph G = (V, E) 
connected?	


Certificate: “”	

Verifier: Ignore certificate.  Run BFS (or DFS) 

to determine if graph is connected.  If so, 
output YES.  Else, output NOT 
CONVINCED.	


38	




Proving Connectivity is in NP	


First, for every YES instance, the verifier 
outputs YES given the certificate “”	


Second, for every NO instance, the verifier 
will never output YES, no matter what the 
certificate is.	


So Graph-Connectivity is in NP.	

This works for any problem in P.  	

Hence, 	


39	

P ⊆ NP



40	


NP = Polynomial-time 
verifiable!

!
P   = Polynomial-time 

solvable!
!
 !
	


Complexity Classes	


P 

NP 

P ⊆ NP



P vs. NP	


But does P = NP?	

How would we answer this question?	

•  Yes: provide a polynomial time algorithm 

for every problem in NP	

•  No: find just one problem in NP and prove 

there is no polynomial time algorithm for 
it	


Doing either of these is worth $1M	


41	




NP-complete: the “hardest” problems in NP	

	


As long as P ≠ NP (seems likely), there is no 
polynomial time algorithm for any NP-
complete problem	

	

We can show that lots of problems are NP-

complete	

42	


SAT, Clique, Vertex Cover, Independent Set, TSP, etc.	


But a beautiful theory was developed	




But a beautiful theory was developed	


NP-complete: the “hardest” problems in NP	


	

What does it mean for one problem to be 

harder than another?  Before defining NP-
complete, we need to define this:	

	


Polynomial-Time Reductions	

	

	

	

	


43	




44	


Reductions: a useful tool	


Intuitive Definition: To reduce A to B means to solve 
A, given a “black box” subroutine solving B.	

	




Reducing MEDIAN to SORT	


45	


“Black Box”	

algorithm for sort	


Input: list of 	

numbers	


Output:	

median	


Call sort alg	
 Output item n/2	


Since we can use alg for SORT to solve MEDIAN,	

SORT is “at least as hard” as MEDIAN	


Algorithm for MEDIAN	




46	


More reductions	


Example: reduce MEDIAN to SORT	

Solution: sort, then select (n/2)nd	


Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	


Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	




Interlude: some notation	


Let A be a problem and x be an input to A.	

	

If x is a YES instance, we write x ∈ A	

If x is a NO instance, we write x ∉ A	

	

Comes from a more formal treatment of this 

material, in which problems can be thought 
of as sets of strings.	

	
 47	




If you want to learn more…	


48	




49	


Polynomial-Time Reductions	


Let A and B be two problems.	

We say that A is polynomially reducible to B (A  ≤p B) 
if there exists a polynomial-time algorithm f that 
converts each instance x of problem A to an 
instance f(x) of B such that: ���
	

x is a YES instance of A  iff  f(x) is a YES instance of B	


	

x ∈ A   ⇔   f(x) ∈ B 	


Sometimes the direction of this 
inequality confuses people 



50	


Why ≤p notation?	


Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	

	


“complexity of A” ≤ “complexity of B” + “complexity of f”	




51	


A ≤p B pictorially	


Algorithm  
to compute f 

x Algorithm  
to solve B 

f(x) f(x) ∈ B? x ∈ A? 

Algorithm to solve A 



52 

Example: Vertex Cover ≤P Set Cover 

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of 
subsets of U, and an integer k, does there exist a collection of ≤ k of 
these sets whose union is equal to U (i.e. that cover U)? 
 
Ex: 
 
 
 
 
 
 
Sample application. 
  m available pieces of software. 
  Set U of n capabilities that we would like our system to have. 
  The i-th piece of software provides the set Si ⊆ U of capabilities. 
  Goal:  achieve all n capabilities using fewest pieces of software. 

 

U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } 
k = 3 
S1 = {1, 7, 8, 9}  S4 = {2, 4, 9} 
S2 = {3, 4, 5, 6}  S5 = {5, 8} 
S3 = {1}   S6 =  {1, 2, 6, 7} 



Example: Vertex Cover ≤P Set Cover 

Vertex Cover ≤ P Set Cover because Set Cover is a generalization of 
Vertex Cover 

53 

SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  

f(x) 



54 

SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

Example: Vertex Cover ≤P Set Cover 

Claim.  Vertex Cover ≤ P Set Cover. 
Pf.  Given a Vertex Cover instance x = (G = (V, E), k), we construct a Set 
Cover instance f(x) as follows: 

–  k = k,  U = E,  Sv = {e ∈ E : e incident to v } 
 
f(x) can be computed in polynomial time. 
x ∈ Vertex Cover iff f(x) ∈ Set Cover, because there is 

 set cover of size ≤ k iff vertex cover of size ≤ k.  ▪ 

a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  



Why do we care about reductions?	


We’ll see plenty more 
reductions, but let’s 
come back to the big 
picture first.	


55	




56	


What does a reduction tell us?	


Observation: p(x) and q(x) polynomials, then	

	
 	
p(x) + q(x) is polynomial	

	
 	
	

	


(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	

(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	

(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	




57	


Definition of NP-Completeness	


Definition: Problem B is NP-hard if every 
problem in NP is polynomially reducible to B.	

	

Definition: Problem B is NP-complete if:	


(1) B belongs to NP, and 	


(2) B is NP-hard.	




58	


P  = Poly-time solvable!
!
NP = Poly-time verifiable!

!
NP-Complete = “Hardest” 

problems in NP	


Complexity Classes	


NP 

P 

NP-Complete 



NP-completeness	


Cool concept, but are there ���
any such problems?	


	

Yes!	

	


Cook-Levin theorem (1971):	

SAT is NP-complete	


	
 59	




Why is SAT NP-complete?	


Proof of Cook-Levin is somewhat involved; I won’t 
show it.  But its essence is not so hard to grasp:	


60	


Encode “solution” using Boolean variables.  SAT mimics “is there a 
solution” via “is there an assignment”.  Digital computers just do Boolean 
logic, and “SAT” can mimic that, too, hence can verify that the assignment 
actually encodes a solution.	


Generic “NP” problem:	

is there a poly size “solution,” 
verifiable by computer in poly time	


“SAT”:	

is there a (poly size) assignment 
satisfying the formula



61	


Proving a problem is NP-complete	


Technically, for condition (2) we have to show that 
every problem in NP is reducible to B.  ���
(Yikes!  Sounds like a lot of work.)	

For the very first NP-complete problem (SAT) this 
had to be proved directly. 	

However, once we have one NP-complete problem, 
then we don’t have to do this every time.	

Why? Transitivity.	




62	


Re-stated Definition	


Lemma: Problem B is NP-complete if:	

(1)  B belongs to NP, and 	


(2’) A is polynomial-time reducible to B, for some 
problem A that is NP-complete.	


	


That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to 
B.	




63	


Usefulness of Transitivity	


In order to show that P is NP-hard, we only have 
to show P’ ≤p P for some NP-hard problem P’, 
Why?	

1) Since P’ is NP-hard,	

	
 	
∀ P’’ ∈ NP, we have P’’ ≤p P’	


2) If we show P’ ≤p P, then by transitivity we ���
	
know that: ∀ P’’∈ NP, we have P’’ ≤p P.	


Thus P is NP-hard.	




64	


Ex: VertexCover is NP-complete	


SAT is NP-complete (shown by S. Cook)	

SAT ≤p VertexCover (we’ll show this later)	

VertexCover is in NP (why?)	


Therefore VertexCover is also NP-complete	

	

So, poly-time algorithm for VertexCover would give 
poly-time algs for everything in NP	




NP-completeness	


Karp (1972): ���
SAT ≤p Clique, ���
SAT ≤p Vertex Cover, 
SAT ≤p Ham Path, …	


	

Since, then, thousands 
more problems proved 
NP-complete	


65	




NP-completeness	


If there was a polynomial time algorithm for any 
NP-complete problem, then P = NP.	


If at least one cannot be solved in polynomial 
time, then none could.	


So either all NP-complete problems have 
polynomial time algorithms, or none do.  Since 
no one has ever found a polynomial time 
algorithm for an NP-complete problem, they 
are “probably” intractable.	


66	




What’s next?	


Use polynomial time reductions to show that 
a number of problems we care about are 
NP-complete.	


Important to know how to do this, in order 
to determine whether you should try to 
solve a new problem.	


Later, we ask what do we do with all these 
NP-complete problems?	


67	




Review	


We defined some useful 
complexity classes.	

	

Cook-Levin Theorem: 
SAT is NP-complete	

	

To prove a new problem 
is NP-complete, we need 
to show a chain of 
reductions from SAT	


68	


NP	


P	


NP-hard	


NP-complete	




Reduction Tree	


69	


Satisfiability	


3-Satisfiability	


Independent Set	


Vertex Cover	


Set Cover	


Clique	


Hamiltonian Cycle	


TSP	


Already shown	


Won’t show	


Today	


Today	




NP-completeness proof outline	


To show a problem P is NP-complete:	

1. Show it is NP (usually easy).	

2. For a problem P’ known to be NP-complete, 
show that P’ ≤p P.	


a.  Provide an algorithm (function) f for transforming input 
of P’ to input of P.	


b.  Argue that f can be computed in polynomial time (usually 
easy).	


c.  Show that x ∈ P’ ⇔ f(x) ∈ P.	

i.  Show that x ∈ P’ ⇒ f(x) ∈ P.	

ii.  Show that f(x) ∈ P ⇒ x ∈ P’.	


70	




71 

Independent Set 

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≥ k, and for each edge at most 
one of its endpoints is in S? 
 
Ex.  Is there an independent set of size ≥ 6?  Yes. 
Ex.  Is there an independent set of size ≥ 7?  No. 

independent set 



72 

Vertex Cover 

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least 
one of its endpoints is in S? 
 
Ex.  Is there a vertex cover of size ≤ 4?  Yes. 
Ex.  Is there a vertex cover of size ≤ 3?  No. 

vertex cover 



Proving Vertex Cover NP-complete 

Theorem: If Independent Set is NP-complete, then Vertex Cover is 
NP-complete. 

 
Proof: Vertex Cover is in NP.  A certificate consists of the set of 

vertices in the cover.  It can be verified in polynomial time that 
such a set of vertices has the required size and does cover all 
edges. 
 
To finish the proof, we will show that Independent Set ≤P Vertex 
Cover. 

73 



74 

Proving Vertex Cover NP-complete 

Observation: S is an independent set iff V - S is a vertex cover. 
 
⇒ 
  Let S be any independent set. 
  Consider an arbitrary edge (u, v). 
  S independent ⇒ u ∉ S or v ∉ S  ⇒  u ∈ V - S or v ∈ V - S. 
  Thus, V - S covers (u, v). 

⇐  
  Let V - S be any vertex cover. 
  Consider two nodes u ∈ S and v ∈ S. 
  Observe that (u, v) ∉ E since V - S is a vertex cover. 
  Thus, no two nodes in S are joined by an edge  ⇒ S independent set. ▪ 



Proving Vertex Cover NP-complete 

Theorem: If Independent Set is NP-complete, then Vertex Cover is 
NP-complete. 

 
Proof (continued): Given an input x = (G = (V, E), k) to Independent Set, 

let f(x) be the Vertex Cover input G = (V, E), n – k.  Clearly, f can be 
computed in polynomial time. 
 
By our observation, x has an independent set of size ≥ k iff f(x) has 
a vertex cover of size ≤ n – k. Hence x ∈ Independent Set ⇔ f(x) ∈ 
Vertex Cover. 

75 



76 

Ex:  

Yes:  x1 = true, x2 = true x3 = false. 

Literal:  A Boolean variable or its negation. 
 
Clause:  A disjunction of literals. 
 
Conjunctive normal form:  A propositional 

formula Φ that is the conjunction of clauses. 
 
 
SAT:  Given CNF formula Φ, does it have a satisfying truth assignment? 
 
3-SAT:  SAT where each clause contains exactly 3 literals. 

Satisfiability 

  

€ 

Cj = x1 ∨ x2 ∨ x3

  

€ 

xi   or  xi

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( )

each corresponds to a different variable 



77 

Independent Set is NP-complete 

Theorem.  3-SAT is NP-complete. 
Pf.  We won’t show this, but there is a reduction from SAT. 
 
Theorem.  Independent Set is NP-compete. 
Pf.  First, Independent Set is clearly in NP.  A certificate would consist 

of the list of vertices.  It could be easily verified in polynomial time 
that no edge has both endpoints in this list of vertices. 
 
We now show that 3-SAT ≤P Independent Set. 



78 

3 Satisfiability Reduces to Independent Set 

Claim.  3-SAT ≤ P INDEPENDENT-SET. 
Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of 

INDEPENDENT-SET that has an independent set of size k iff Φ is 
satisfiable. 

 
Construction. 
  G contains 3 vertices for each clause, one for each literal. 
  Connect 3 literals in a clause in a triangle. 
  Connect literal to each of its negations. 

 
 

  

€ 

x2

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )
  

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3

k = 3 

G 



79 

3 Satisfiability Reduces to Independent Set 

Claim.  G contains independent set of size k = |Φ| iff Φ is satisfiable. 
 
Pf.  ⇒  Let S be independent set of size k. 
  S must contain exactly one vertex in each triangle. 
  Set these literals to true. 
  Truth assignment is consistent and all clauses are satisfied. 

Pf  ⇐   Given satisfying assignment, select one true literal from each 
triangle. This is an independent set of size k.  ▪ 

 
 

  

€ 

x2   

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3

k = 3 

G 

and any other variables in a consistent way 

  

€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )



Reduction Tree	


80	


Satisfiability	


3-Satisfiability	


Independent Set	


Vertex Cover	


Set Cover	


Clique	


Hamiltonian Cycle	


TSP	


Shown	


Next	


Shown	


Shown	




81 

Hamiltonian Cycle 

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V. 

YES 



82 

Hamiltonian Cycle 

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V. 

1 

3 

5 

1' 

3' 

2 

4 

2' 

4' 

NO 



83 

Directed Hamiltonian Cycle 

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle Γ that contains every node in V? 
 
Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE. 
 
Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes. 

v 

a 

b 

c 

d 

e 
vin 

aout 

bout 

cout 

din 

ein 

G G' 

v vout 



84 

3-SAT Reduces to Directed Hamiltonian Cycle 

Claim. 3-SAT ≤ P DIR-HAM-CYCLE. 
 
Pf.   Given an instance Φ of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable. 
 
Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments. 



85 

3-SAT Reduces to Directed Hamiltonian Cycle 

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses. 
  Construct G to have 2n Hamiltonian cycles. 
  Intuition:  traverse path i from left to right  ⇔  set variable xi = 1. 

s 

t 

3k + 3 

x1 

x2 

x3 



86 

3-SAT Reduces to Directed Hamiltonian Cycle 

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses. 
  For each clause:  add a node and 6 edges. 

s 

t 

clause node clause node 3211 VV xxxC = 3212 VV xxxC =

x1 

x2 

x3 



Minimum-Weight Triangulation 

Two triangulations of a set of five points: 
 
 
 
 
 
 
 
 
Minimum Weight Triangulation Problem: Given a set of n points in the 

plane, find the triangulation of minimum total weight.  (Decision 
version: is there a triangulation of weight <= k?) 

 
Problem first posed in 1970s.  Until 2006, “the most longstanding open 

problem in computational geometry.” 
Mulzer and Rote (2006): MWT is NP-hard.  (Reduction from 3-SAT.) 
 
 
 

87 

Weight = 22.9 Weight = 15.7 


