
CSE 417, Winter 2012 !
!

Dynamic Programming"

Ben Birnbaum"
Widad Machmouchi"

1"

Slides adapted from Larry Ruzzo,
Steve Tanimoto, and Kevin Wayne !

2"

Dynamic Programming"

Outline:"
General Principles"
Easy Examples – Fibonacci, Licking Stamps"

Meatier examples"
Weighted interval scheduling"
And others"

3"

Some Algorithm Design
Techniques, I"

General overall idea"
Reduce solving a problem to a smaller problem or
problems of the same type"

Greedy algorithms"
Used when one needs to build something a piece at a
time"
Repeatedly make the greedy choice - the one that looks
the best right away"
Usually fast if they work (but often don't)"

4"

Some Algorithm Design
Techniques, II"

Divide & Conquer"
Reduce problem to one or more sub-problems of the
same type "
Typically, each sub-problem is at most a constant fraction
of the size of the original problem"

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)"

"

5"

Some Algorithm Design
Techniques, III"

Dynamic Programming"
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution"

Useful when the same sub-problems show up
again and again in the solution"

6

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
  Dynamic programming = planning over time.
  Secretary of Defense was hostile to mathematical research.
  Bellman sought an impressive name to avoid confrontation.

–  "it's impossible to use dynamic in a pejorative sense"
–  "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

7"

A very simple case:
Computing Fibonacci Numbers"

Recall Fn = Fn-1 + Fn-2 and F0 = 0, F1 = 1"
"

Recursive algorithm:"
Fibo(n) !
"if n=0 then return(0)
"else if n=1 then return(1)
"else return(Fibo(n-1)+Fibo(n-2))"

8"

Call tree - start"
F (6)!

F (5)! F (4)!

F (3)!

F (4)!

F (2)!

F (2)!

F (3)!

F (1)! F (0)!

1! 0!

F (1)!

9"

Full call tree"
F (6)!

F (2)!

F (5)! F (4)!

F (3)!

F (4)!

F (2)!

F (2)!

F (3)!F (3)!

F (1)! F (0)!

1! 0!

F (0)!

0!1!

F (1)!

F (1)! F (0)!

1! 0!F (1)!

F (2)! F (1)!

1!
F (0)!

1! 0!

F (2)! F (1)!

1!
F (0)!

1! 0!

F (1)!

1!

F (1)!

10"

Memo-ization (Caching)"

Save all answers from earlier recursive calls"
Before recursive call, test to see if value has
already been computed"
Dynamic Programming"

NOT memoized; instead, convert memoized alg
from a recursive one to an iterative one !
(top-down → bottom-up)"

11"

Fibonacci - Memoized Version"

initialize: F[i] ← undefined for all i"
F[0] ← 0 "
F[1] ← 1 "

FiboMemo(n):"
"if(F[n] undefined) {"
" "F[n] ← FiboMemo(n-2)+FiboMemo(n-1)"

"}"
"return(F[n])"

12"

Fibonacci - Dynamic
Programming Version"

FiboDP(n):
"F[0] ← 0
"F[1] ← 1
"for i=2 to n do
" F[i] ← F[i-1]+F[i-2]
"end "
"return(F[n])"

For this problem,
keeping only last
2 entries instead
of full array
suffices, but about
the same speed"

13"

Dynamic Programming"

Useful when "
Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated"

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved"

“principle of optimality”"

14"

Making change"

Given:"
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins"
An amount N "

Problem: choose fewest coins totaling N"
"
Cashier’s (greedy) algorithm works: "

Give as many as possible of the next biggest "!
denomination"

15"

Licking Stamps"

Given: "
Large supply of 5¢, 4¢, and 1¢ stamps"
An amount N"

Problem: choose fewest stamps totaling N"

16"

5" 0" 2" 7"

4" 1" 3" 8"

3" 3" 0" 6"

of 5¢"
stamps"

of 4 ¢"
stamps"

of 1¢"
stamps"

total"
number"

How to Lick 27¢"

 "

Morals: Greed doesn’t pay; success of “cashier’s
alg” depends on coin denominations"

17"

Better Idea"

Theorem: If last stamp in an opt sol has value
v, then previous stamps are opt sol for N-v. "
Proof: if not, we could improve the solution
for N by using opt for N-v. !
Alg: for i = 1 to n:"

€

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)

i=0
i≥5
i≥4
i≥1

$
%
&

'
(
)

where M(i) = min
number of stamps
totaling i¢!

18"

New Idea: Recursion"

€

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)

i=0
i≥5
i≥4
i≥1

$
%
&

'
(
)

 27!
!

!22 ! !23 ! !26!
!
 17 18 21 18 19 22 21 !22 25

Time: > 3N/5

.!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.! .!.!.!

19"

Another New Idea: !
Avoid Recomputation"

Tabulate values of solved subproblems"
Top-down: “memoization”"
Bottom up: !
!
"for i = 0, …, N do" " " " " "

"
"

Time: O(N)"
"

!
"
#

$
%
&

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

]1[1
]4[1
]5[1

0
 min][

i
i
i
i

iM
iM
iMiM

20"

Finding How Many Stamps"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2!

21"

Finding Which Stamps: !
Trace-Back"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2"

4¢!

22"

Trace-Back"

Way 1: tabulate all"
add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)"

Way 2: re-compute just what’s needed"
TraceBack(i):!
!if i == 0 then return;!
!for d in {1, 4, 5} do!
! !if M[i] == 1 + M[i - d] !
! then break;!
!print d;!
!TraceBack(i - d);"

!
"
#

$
%
&

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

]1[1
]4[1
]5[1

0
 min][

i
i
i
i

iM
iM
iMiM

23"

Elements of Dynamic
Programming"

What feature did we use?"
What should we look for to use again?"
"
“Optimal Substructure” !
"Optimal solution contains optimal subproblems"

“Repeated Subproblems”!
"The same subproblems arise in various ways"

6.1 Weighted Interval Scheduling

25

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight or value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

26

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

27

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

28

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

  Case 1: OPT selects job j.

–  collect profit vj
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

  Case 2: OPT does not select job j.
–  must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

optimal substructure

29

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

30

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

31

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

32

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
  Sort by finish time: O(n log n).
  Computing p(⋅) : O(n log n) via sorting by start time.

  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

  Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

33

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

34

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

6.3 Segmented Least Squares

36

Segmented Least Squares

Least squares.
  Foundational problem in statistic and numerical analysis.
  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).
  Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ⇒ min error is achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

37

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
parsimony?

x

y

goodness of fit

number of lines

38

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes:

–  the sum of the sums of the squared errors E in each segment
–  the number of lines L

  Tradeoff function: E + c L, for some constant c > 0.

x

y

39

Dynamic Programming: Multiway Choice

Notation.
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
  e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
  Last segment uses points pi, pi+1 , . . . , pj for some i.
  Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

40

Segmented Least Squares: Algorithm

Running time. O(n3).
  Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
 M[0] = 0
 for j = 1 to n
 for i = 1 to j
 compute the least square error eij for
 the segment pi,…, pj

 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1])

 return M[n]
}

can be improved to O(n2) by pre-computing various statistics

6.4 Subset-Sum Problem

42

Subset-Sum Problem

Subset-Sum problem.
  Input: a set of items {1, …, n} with weights wi and a capacity W
  Output: A subset S of items whose weights sum to ≤ W
  Goal: Maximize the sum of the weights of the items chosen

43

Dynamic Programming: False Start

Def. OPT(i) = max weight of a subset of items 1, …, i.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 }

  Case 2: OPT selects item i.
–  accepting item i does not immediately imply that we will have to

reject other items
–  without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

44

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max weight of a subset of items 1, …, i with weight limit
w.

  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

  Case 2: OPT selects item i.
–  new weight limit = w – wi
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT (i, w) =
0 if i = 0
OPT (i−1, w) if wi >w
max OPT (i−1, w), wi + OPT (i−1, w−wi){ } otherwise

"

#
$$

%
$
$

45

Subset-Sum Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
 M[0, w] = 0

for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], wi + M[i-1, w-wi]}

return M[n, W]

46

Subset-Sum Problem: Running Time

Running time. Θ(n W).
  Not polynomial in input size!
  "Pseudo-polynomial."
  Decision version of Subset-Sum is NP-complete. [Chapter 8]

