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Dynamic Programming"

Outline:"
General Principles"
Easy Examples – Fibonacci, Licking Stamps"

Meatier examples"
Weighted interval scheduling"
And others"
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Some Algorithm Design 
Techniques, I"

General overall idea"
Reduce solving a problem to a smaller problem or 
problems of the same type"

Greedy algorithms"
Used when one needs to build something a piece at a 
time"
Repeatedly make the greedy choice - the one that looks 
the best right away"
Usually fast if they work (but often don't)"
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Some Algorithm Design 
Techniques, II"

Divide & Conquer"
Reduce problem to one or more sub-problems of the 
same type "
Typically, each sub-problem is at most a constant fraction 
of the size of the original problem"

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort 
(kind of)"

"
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Some Algorithm Design 
Techniques, III"

Dynamic Programming"
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution"

Useful when the same sub-problems show up 
again and again in the solution"
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Dynamic Programming History 

Bellman.  Pioneered the systematic study of dynamic programming in 
the 1950s. 
 
Etymology. 
  Dynamic programming = planning over time. 
  Secretary of Defense was hostile to mathematical research. 
  Bellman sought an impressive name to avoid confrontation. 

–  "it's impossible to use dynamic in a pejorative sense" 
–  "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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A very simple case:               
Computing Fibonacci Numbers"

Recall Fn = Fn-1 + Fn-2  and F0 = 0, F1 = 1"
"

Recursive algorithm:"
Fibo(n) !
"if n=0 then return(0)                                             
"else if n=1 then return(1)                                                 
"else return(Fibo(n-1)+Fibo(n-2))"
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Call tree - start"
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Full call tree"
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Memo-ization (Caching)"

Save all answers from earlier recursive calls"
Before recursive call, test to see if value has 
already been computed"
Dynamic Programming"

NOT memoized; instead, convert memoized alg 
from a recursive one to an iterative one !
(top-down → bottom-up)"



11"

Fibonacci - Memoized Version"

initialize: F[i] ← undefined for all i"
F[0] ← 0 "
F[1] ← 1 "

FiboMemo(n):"
"if(F[n] undefined) {"
" "F[n] ← FiboMemo(n-2)+FiboMemo(n-1)"

"}"
"return(F[n])"
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Fibonacci - Dynamic 
Programming Version"

FiboDP(n):                                                      
"F[0] ← 0                                                   
"F[1] ← 1                                                
"for i=2 to n do                                          
"     F[i]  ← F[i-1]+F[i-2]                                  
"end                                                   "
"return(F[n])"

For this problem, 
keeping only last 
2 entries instead 
of full array 
suffices, but about 
the same speed"
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Dynamic Programming"

Useful when "
Same recursive sub-problems occur repeatedly!

Parameters of these recursive calls anticipated"

The solution to whole problem can be solved 
without knowing the internal details of how the 
sub-problems are solved"

“principle of optimality”"
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Making change"

Given:"
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins"
An amount N "

Problem: choose fewest coins totaling N"
"
Cashier’s (greedy) algorithm works: "

Give as many as possible of the next biggest "!
denomination"
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Licking Stamps"

Given: "
Large supply of 5¢, 4¢, and 1¢ stamps"
An amount N"

Problem: choose fewest stamps totaling N"
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5" 0" 2" 7"

4" 1" 3" 8"

3" 3" 0" 6"

# of 5¢"
stamps"

# of 4 ¢"
stamps"

# of 1¢"
stamps"

total"
number"

How to Lick 27¢"

 "

Morals: Greed doesn’t pay; success of “cashier’s 
alg” depends on coin denominations"
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Better Idea"

Theorem:  If last stamp in an opt sol has value 
v, then previous stamps are opt sol for N-v. "
Proof: if not, we could improve the solution 
for N by using opt for N-v. !
Alg: for i = 1 to n:"

€ 

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)

i=0
i≥5
i≥4
i≥1
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where M(i) = min 
number of stamps 
totaling i¢!
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New Idea: Recursion"

€ 

M (i) = min
0
1+M (i−5)
1+M (i−4)
1+M (i−1)
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Another New Idea: !
Avoid Recomputation"

Tabulate values of solved subproblems"
Top-down: “memoization”"
Bottom up: !
!
"for i = 0, …, N do"      " " "    "   "

"
"

Time: O(N)"
"

!
"
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Finding How Many Stamps"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

 

1+Min(3,1,3) = 2!
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Finding Which Stamps: !
Trace-Back"

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

 

1+Min(3,1,3) = 2"

4¢!
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Trace-Back"

Way 1: tabulate all"
add data structure storing back-pointers indicating which 
predecessor gave the min. (more space, maybe less time)"

Way 2: re-compute just what’s needed"
TraceBack(i):!
!if i == 0 then return;!
!for d in {1, 4, 5} do!
! !if M[i] == 1 + M[i - d] !
!    then break;!
!print d;!
!TraceBack(i - d);"

!
"
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Elements of Dynamic 
Programming"

What feature did we use?"
What should we look for to use again?"
"
“Optimal Substructure” !
"Optimal solution contains optimal subproblems"

“Repeated Subproblems”!
"The same subproblems arise in various ways"



6.1  Weighted Interval Scheduling 
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Weighted Interval Scheduling 

Weighted interval scheduling problem. 
  Job j starts at sj, finishes at fj, and has weight or value vj .  
  Two jobs compatible if they don't overlap. 
  Goal:  find maximum weight subset of mutually compatible jobs. 

Time 
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0 1 2 3 4 5 6 7 8 9 10 
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Unweighted Interval Scheduling Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time. 
  Add job to subset if it is compatible with previously chosen jobs. 

 
 
 
Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed. 
 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

b 

a 

weight = 999 

weight = 1 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j. 
 
  Case 1:  OPT selects job j. 

–  collect profit vj 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  OPT does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

optimal substructure 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Compute-Opt(j) { 
   if (j = 0) 
      return 0 
   else 
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) 
} 

Weighted Interval Scheduling:  Brute Force 

Brute force algorithm. 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  
 
Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 

3 

4 

5 

1 

2 

p(1) = 0, p(j) = j-2 

5 

4 3 

3 2 2 1 

2 1 

1 0 

1 0 1 0 
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
Compute p(1), p(2), …, p(n) 
 
for j = 1 to n 
   M[j] = empty 
M[0] = 0 
 
M-Compute-Opt(j) { 
   if (M[j] is empty) 
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) 
   return M[j] 
} 

global array 

Weighted Interval Scheduling:  Memoization 

Memoization.  Store results of each sub-problem in a cache; 
lookup as needed. 
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Weighted Interval Scheduling:  Running Time 

Claim.  Memoized version of algorithm takes O(n log n) time. 
  Sort by finish time:  O(n log n). 
  Computing p(⋅) :  O(n log n) via sorting by start time. 

  M-Compute-Opt(j):  each invocation takes O(1) time and either 
–  (i)  returns an existing value M[j] 
–  (ii) fills in one new entry M[j] and makes two recursive calls 

  Progress measure Φ = # nonempty entries of M[]. 
–  initially Φ = 0,  throughout Φ ≤ n.  
–  (ii) increases Φ by 1  ⇒  at most 2n recursive calls. 

  Overall running time of M-Compute-Opt(n) is O(n).   ▪ 

Remark.  O(n) if jobs are pre-sorted by start and finish times. 
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Weighted Interval Scheduling:  Finding a Solution 

Q.  Dynamic programming algorithms computes optimal value. 
What if we want the solution itself? 
A.  Do some post-processing. 

  # of recursive calls ≤ n  ⇒  O(n). 

 
Run M-Compute-Opt(n) 
Run Find-Solution(n) 
 
Find-Solution(j) { 
   if (j = 0) 
      output nothing 
   else if (vj + M[p(j)] > M[j-1]) 
      print j 
      Find-Solution(p(j)) 
   else 
      Find-Solution(j-1) 
} 
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Weighted Interval Scheduling:  Bottom-Up 

Bottom-up dynamic programming.  Unwind recursion. 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn 
 
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
Compute p(1), p(2), …, p(n) 
 
Iterative-Compute-Opt { 
   M[0] = 0 
   for j = 1 to n 
      M[j] = max(vj + M[p(j)], M[j-1]) 
} 



6.3  Segmented Least Squares 
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Segmented Least Squares 

Least squares. 
  Foundational problem in statistic and numerical analysis. 
  Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn). 
  Find a line y = ax + b that minimizes the sum of the squared error:  

Solution.  Calculus  ⇒  min error is achieved when 

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x 

y 
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Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). 

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony? 

x 

y 

goodness of fit 

number of lines 
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Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes: 

–  the sum of the sums of the squared errors E in each segment 
–  the number of lines L 

  Tradeoff function:  E + c L, for some constant c > 0. 

x 

y 
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Dynamic Programming:  Multiway Choice 

Notation. 
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 
  e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj. 

 
To compute OPT(j): 
  Last segment uses points pi, pi+1 , . . . , pj for some i. 
  Cost = e(i, j) + c + OPT(i-1). 

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 
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Segmented Least Squares:  Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  O(n3). 
  Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula. 

INPUT: n, p1,…,pN , c 
 
Segmented-Least-Squares() { 
   M[0] = 0 
   for j = 1 to n 
      for i = 1 to j 
         compute the least square error eij for 
         the segment pi,…, pj 
 
   for j = 1 to n 
      M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1]) 
 
   return M[n] 
} 

can be improved to O(n2) by pre-computing various statistics 



6.4  Subset-Sum Problem 
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Subset-Sum Problem 

Subset-Sum problem. 
  Input: a set of items {1, …, n} with weights wi and a capacity W 
  Output: A subset S of items whose weights sum to ≤ W 
  Goal: Maximize the sum of the weights of the items chosen 
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Dynamic Programming:  False Start 

Def.  OPT(i) = max weight of a subset of items 1, …, i. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 }  

  Case 2:  OPT selects item i. 
–  accepting item i does not immediately imply that we will have to 

reject other items 
–  without knowing what other items were selected before i, 

we don't even know if we have enough room for i 

 
Conclusion.  Need more sub-problems! 



44 

Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max weight of a subset of items 1, …, i with weight limit 
w. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

OPT (i, w) =
0 if  i = 0
OPT (i−1, w) if  wi >w
max OPT (i−1, w), wi + OPT (i−1, w−wi ){ } otherwise

"

#
$$

%
$
$
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Subset-Sum Problem:  Bottom-Up 

Knapsack.  Fill up an n-by-W array. 

 
Input: n, W, w1,…,wN, v1,…,vN 
 
for w = 0 to W 
   M[0, w] = 0 
 
for i = 1 to n 
   for w = 1 to W 
      if (wi > w) 
         M[i, w] = M[i-1, w] 
      else 
         M[i, w] = max {M[i-1, w], wi + M[i-1, w-wi ]} 
 
return M[n, W] 
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Subset-Sum Problem:  Running Time 

Running time.  Θ(n W). 
  Not polynomial in input size! 
  "Pseudo-polynomial." 
  Decision version of Subset-Sum is NP-complete.  [Chapter 8] 


